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A B S T R A C T

Symptoms of Parkinson’s disease vary from patient to patient. Additionally, the progression of those symptoms
also differs among patients. Most of the studies on the analysis of speech of people with Parkinson’s disease do
not consider such an individual variation. This paper presents a methodology for the automatic and individual
monitoring of speech disorders developed by PD patients. The neurological state and dysarthria level of the
patients are evaluated. The proposed system is based on individual speaker models which are created for each
patient. Two different models are evaluated, the classical GMM–UBM and the i–vectors approach. These two
methods are compared with respect to a baseline found with a traditional Support Vector Regressor. Different
speech aspects (phonation, articulation, and prosody) are considered to model recordings of spontaneous speech
and a read text. A multi-aspect coefficient is proposed with the aim of incorporating information from all of these
speech aspects into a single measure. Two different scenarios are considered to assess a set with seven PD
patients: (1) the longitudinal test set which consists of speech recordings captured in five recording sessions
distributed from 2012 to 2016, and (2) the at-home test set which consists of speech recordings captured in the
home of the same seven patients during 4 months (one day per month, four times per day). The UBM is trained
with the recordings of 100 speakers (50 with Parkinson’s disease and 50 healthy speakers) captured with con-
trolled acoustic conditions and a professional audio-setting. With the aim of evaluating the suitability of the
proposed approaches and the possibility of extending this kind of systems to remotely assess the speech of the
patients, a total of five different communication channels (sound-proof booth, Skype®, Hangouts®, mobile phone,
and land-line) are considered to train and test the system. Due to the reduced number of recording sessions in the
longitudinal test set, the experiments that involved this set are evaluated with the Pearson’s correlation. The
experiments with the at-home test set are evaluated with the Spearman’s correlation. The results estimating the
dysarthria level of the patients in the at-home test set indicate a correlation of 0.55 with a modified version of
the Frenchay Dysarthria Assessment scale when the GMM-UBM model is applied upon the Skype® recordings.
The results in the longitudinal test set indicate a correlation of 0.77 using a model based on i-vectors with
recordings captured in the sound-proof-booth. The evaluation of the neurological state of the patients in the
longitudinal test set shows correlations of up to 0.55 with the Movement Disorder Society - Unified Parkinson’s
Disease Rating Scale also using models based on i-vectors created with Skype® recordings. These results suggest
that the i–vector approach is suitable when the acoustic conditions among recording sessions differ (longitudinal
test set). The GMM-UBM approach seems to be more suitable when the acoustic conditions do not change a lot
among recording sessions (at-home test set). Particularly, the best results were obtained with the Skype® calls,
which can be explained due to several preprocessing stages that this codec applies to the audio signals. In
general, the results suggest that the proposed approaches are suitable for tele-monitoring the dysarthria level
and the neurological state of PD patients.
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1. Introduction

1.1. Motivation

People suffering from PD are characterized by the progressive loss of
dopaminergic neurons in the midbrain (Hornykiewicz, 1998). PD
symptoms include tremor, slow movement, lack of coordination, and
speech impairments (Ho et al., 1999; Darley et al., 1969). Currently,
neurologists rely on medical history, physical and neurological ex-
aminations to assess the patients. This procedure has two main lim-
itations: (i) it is not objective (the evaluation depends on the doctor’s
criterion and expertise), and (ii) due to the motor disability of PD pa-
tients, to visit a hospital to perform medical screenings and/or assess-
ments is expensive and difficult (Theodoros et al., 2006). Besides such
difficulties, the symptoms progress differently among patients, thus it is
important to monitor their symptoms individually (per patient) and
over long periods of time. Such a monitoring is not feasible if the pa-
tient is required to visit the doctor to every screening. The most suitable
methods to perform continuous monitoring of the symptoms are based
on computer-aided tools. These methods have captured the attention of
the research community because they are objective, easy to use, and
reproducible. Speech signals are one of the most suitable ways to cap-
ture information about the neurological state of PD patients (Tsanas
et al., 2010; Skodda et al., 2013; Orozco-Arroyave et al., 2016a). Stu-
dies reported in the state-of-the-art about assessing the neurological
state of PD patients from speech signals always consider situations
where the acoustic conditions are relatively controlled, i.e., quiet
rooms, good/expensive microphones, and direct connection to the re-
cording device. Additionally, the state-of-the-art is mainly based on
classical methods to model speech signals, i.e., measurements are ex-
tracted from the speech signal and regression methods are used to as-
sess the neurological state of the patient. This paper presents a meth-
odology for the individual monitoring of speech impairments developed
by PD patients during the disease progression. The proposed approach
overcomes the state-of-the-art in several aspects: (i) the method is based
on individual models, which are based on Gaussian Mixture Models –
Universal Background Models (GMM–UBM), thus the system perfor-
mance is adapted to the speech of each patient, (ii) different commu-
nication channels are considered including land-lines, mobile phones,
Internet-based systems (Skype® and Hangouts®), and traditional re-
cordings performed during a medical appointment. The proposed ap-
proach is also tested on two kinds of recordings: (i) signals captured
during several recording sessions distributed from 2012 to 2016, and
(ii) signals captured in 16 sessions performed in the houses of several
patients during 4 months (one day per month, every two hours and
during 8 h). The use of these two recording sets make the experiments
reported in this paper highly original and novel, thus we consider that
this work is a significant contribution to the development of computer-
aided tools to monitor the progression of PD.

1.2. Parkinson’s disease: evaluation and monitoring

1.2.1. Neurological evaluation
There is no standard test to diagnose PD. Doctors rely on the clinical

history and physical examinations to assess patients. There are several
tests to evaluate the disease severity. One of the most widely used is the
Movement Disorder Society - Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS). This scale is divided into four sections: Section 1 com-
prises non-motor experiences (13 items), Section 2 includes motor ac-
tivities of daily living (13 items), Section 3 evaluates motor capabilities
(33 items), and Section 4 considers motor complications (6 items)
(Goetz et al., 2008). Although the scale has a total of 65 items, speech is
only considered in one of them.

1.2.2. Dysarthria level assessment
There are several scales and clinical methods to evaluate dysarthric

speech. One of them is the Frenchay Dysarthria Assessment–2 (FDA–2)
(Enderby and Palmer, 2008). The original version of the FDA–2 con-
siders several factors that are affected in people suffering from dysar-
thria, such as reflexes, respiration, lips movement, palate movement,
laryngeal capability, tongue posture/movement, intelligibility, and
others. The FDA–2 requires the patient to visit the examiner, which is
not possible in most cases when people suffering from PD are con-
sidered. Bering this in mind, it was necessary to develop a modified
version of the FDA (m–FDA), which can be administered based on
speech signals previously recorded, thus the patient is not required to
visit the clinician to be evaluated (Cernak et al., 2017). The m–FDA
considers several aspects of speech: respiration, lips movement, palate/
velum movement, larynx, tongue, monotonicity, and intelligibility.
Speech impairments are evaluated in a total of 13 items and each of
them ranges from 0 (normal or completely healthy) to 4 (very im-
paired), thus the total score of the scale ranges from 0 to 52.

1.2.3. Assessment of the neurological state from speech
In recent years the research community has been interested in de-

veloping methods to assess the neurological state of PD patients from
speech. One of the reasons to look for such an aim is to reduce treat-
ment and monitoring costs and another reason is to develop objective
tools/systems that help clinicians in the assessment and screening of the
patients. In Asgari and Shafran (2010) the authors proposed a metho-
dology to assess the UPDRS-III score from speech recordings of 82
subjects. The participants were asked to perform three speech tasks
including the sustained phonation of the vowel /a/, the rapid repetition
of the syllables (/pa/-/ta/-/ka/), and the reading of three standard
texts. The set of features extracted from the speech recordings include
pitch, spectral entropy, 13 cepstral coefficients, the number and dura-
tion of voiced and unvoiced frames, jitter, shimmer, Harmonic to Noise
Ratio (HNR), and the ratio of energy in the first and second harmonics.
The set of features was computed separately for each speech task. The
UPDRS scores were obtained using two Support Vector Regressor
(SVR)-based approaches: (1) ϵ-SVR and (2) ν-SVR. Additionally, dif-
ferent kernels were used to train the SVRs including polynomial, radial
basis function, and sigmoid functions. The authors reported that it is
possible to estimate the UPDRS-III with a Mean Absolute Error (MAE) of
5.66 using an ε-SVR with a cubic polynomial kernel. Later in
Bayestehtashk et al. (2015) the authors compared three regression
techniques to assess the UPDRS scores including ridge regression, Least
Absolute Shrinkage and Selection Operator (LASSO) regression, and
linear SVR. Speech recordings of 168 patients were collected in a single
recording session. Besides the features described in Asgari and Shafran
(2010), the authors added information extracted with the openSMILE
toolkit (Eyben et al., 2010). The authors reported that the neurological
state of the patients can be assessed with a MAE of 5.5 considering only
PD patients in the training process, however, due to the lack of long-
itudinal data, it is not clear whether the proposed approach is suitable
to track the neurological state of each patient. Furthermore, the results
are presented only in terms of the MAE, which only makes sense when
there is a baseline to compare the performance of the models. Besides,
in the INTERSPEECH 2015 Computational Paralinguistic Challenge
(ComParE 2015) our team participated in the organization of the Par-
kinson’s Condition sub-challenge, where the task of neurological state
evaluation of PD patients from speech was addressed (Schuller et al.,
2015). Recordings of the 50 patients (25 male, 25 female) included in
the PC-GITA database (Orozco-Arroyave et al., 2014) were considered
to form the train and development subsets. The test set included a total
of 11 patients recorded in non-controlled noise conditions, i.e., not
using a sound-proof booth and a professional audio setting. A total of 42
speech tasks were considered. The neurological state of the patients was
assessed by a neurologist expert according to the motor section of the
MDS-UPDRS (MDS-UPDRS-III). The winners of the challenge reported a
Spearman’s correlation coefficient of 0.65 between the real MDS-
UPDRS-III scores and the estimated values. The authors developed a
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model based on Deep Rectifier Neural Networks and Gaussian Processes
Regression (Grósz et al., 2015). Although, the results obtained by the
winners are moderate (0.50≤ r≤ 0.70), a comparison with a dysar-
thria scale is missing in order to determine whether the introduced
methods are suitable to detect speech impairments developed by PD
patients. Recently, in Orozco-Arroyave et al. (2016b) our team pre-
sented a methodology to estimate the neurological state of PD patients
from speech signals. Recordings of Spanish, German, and Czech PD
patients were considered to estimate their neurological state according
to the UPDRS-III score. The regression process was performed using a
linear ϵ-SVR. Four different speech tasks were considered. The authors
applied the articulation model introduced in Orozco-Arroyave (2016).
The model consists of extracting the energy in the transitions from
unvoiced to voiced (onset) and from voiced to unvoiced (offset) seg-
ments considering different frequency bands distributed according to
the Bark and the Mel scales. Additionally, speech intelligibility was
objectively evaluated using the Google Inc.® automatic speech re-
cognition system. According to the authors the neurological state of the
patients, in terms of the MDS-UPDRS-III score, can be estimated with a
Spearman’s correlation of up to 0.74 when several speech tasks are
modeled considering the fusion of articulation and intelligibility mea-
sures.

Note that most of the studies in the literature are focused on as-
sessing the neurological state of groups of PD patients. Assessments are
performed considering only one recording session, thus the disease
progression is not evaluated/modeled. The next subsection presents the
most recent contributions of the research community to perform long-
itudinal evaluations, i.e., longitudinal monitoring, of patients suffering
from PD considering several recording sessions.

1.2.4. Longitudinal monitoring of PD from speech
There are several studies about automatic monitoring of PD symp-

toms from speech considering different recording sessions distributed
over a period of time. In Tsanas et al. (2010) the authors considered
recordings of sustained vowels to estimate the disease progression. The
signals were modeled using several acoustic measures including jitter,
shimmer, Noise to Harmonic Ratio (NHR), HNR, Relative Amplitude
Perturbation, Period Perturbation Quotient, Amplitude Perturbation
Quotient, Recurrence Period Density Entropy, Detented Fluctuation
Analysis, and Pitch Period Entropy. The UPDRS-III scores were assessed
using three linear regression techniques: Least Squares (LS), Iteratively
Re-weighted Least Squares, and LASSO. The Classification And Re-
gression Trees (CARTs) approach was also applied. The speech of 42 PD
patients (28 male, 14 female) was recorded once per week during six
months. Neurologist experts evaluated the patients three times along
the study, thus the weekly UPDRS scores were obtained by the authors
using a piecewise linear interpolation. The performance of the regres-
sion techniques was evaluated using the MAE. The authors reported
that the CARTs is the best approach with a MAE of 7.5 points in the
evaluation of the total value of the UPDRS scale. The scores of the
motor section in the UPDRS (UPDRS-III) were estimated with a MAE of
6 points. This study was one of the first reporting results of PD severity
assessment from speech. However, the authors were not aware of the
speaker independence because their experiments mixed recordings of
the test and train sets, thus the reported results are highly optimistic
and biased. The progression of speech impairments in a longitudinal
study is presented in Skodda et al. (2013). The speech of 80 PD patients
(48 male, 32 female) was recorded from 2002 to 2012 in two recording
sessions. The time between the first and second session ranged from 12
to 88 months. A control group of 60 healthy persons (30 male, 30 fe-
male) was also considered. The participants were asked to read a text
and to produce a sustained phonation of the vowel /a/. In both sessions
the patients were assessed by neurologist experts according to the
UPDRS-III. The audio signals were perceptually evaluated by two of the
authors (Skodda and Grönheit). Four aspects of speech were considered
in the perceptual evaluation: voice, articulation, prosody, and fluency.

These aspects were used by the authors to describe motor speech dis-
orders suffered by PD patients. Additionally, an acoustic analysis was
performed to describe these speech aspects. Voice was modeled with a
set of features including jitter, shimmer, NHR, and average of the pitch.
For articulation the Vowel Articulation Index (VAI) and the percentage
of pauses within polysyllabic words are considered. Prosody is analyzed
with the estimation of the standard deviation of the pitch. Fluency was
evaluated considering the Net Speech Rate (NSR) and the pause ratio.
To assess the progression of speech and voice impairments the authors
compared the extracted features in the first and the second session
using paired and unpaired t-test. The authors found significant differ-
ences for shimmer, NHR, NSR, pause ratio, and VAI when features ex-
tracted from the first session are compared with respect to the same
features extracted from the second session. Although, longitudinal data
is considered to assess the progression of speech impairments due to
PD, only two recording sessions are considered. Furthermore, the au-
thors used a statistical test to detect changes in speech, thus it is not
clear whether the method is suitable to monitor speech disorders of
patients with PD. A study for the monitoring of PD progression is also
presented in Gómez-Vilda et al. (2015). The authors recorded a total of
four male patients every week during one month in four recording
sessions. Speech recordings of 100 healthy speakers (50 male, 50 fe-
male) were also considered. Sustained phonations of the vowel /a/
were modeled using different features to describe tremor, perturbation
of the vocal folds, and biomechanical phonation impairment. Features
from the 50 male healthy controls (HC) were used as baseline to de-
scribe the normal state of the speech. During the recording sessions the
patients continued their pharmacological treatment and received
speech therapy. Each patient was evaluated according to the H&Y scale.
The suitability of the features used to describe phonation impairments
was evaluated by a weighted sum of the extracted features as a function
of a sigmoid that ranges from 0 to 5. According to the authors, the most
relevant features are jitter, vocal fold body mass, body stiffness, ad-
duction defect, physiological and neurological tremor amplitude, flutter
amplitude, and global tremor. Similarly, in Gómez-Vilda et al. (2015),
the authors proposed the Log Likelihood Improvement Ratio (LLIR) as a
metric to compare speech recordings of eight male PD patients captured
in four recording sessions. The patients followed pharmacological
treatment and received speech therapy. The aim of the study was to
detect changes in the voice before and after the treatment using the
same feature set described in Gómez-Vilda et al. (2015). The authors
reported that LLIR is a good metric to detect changes in phonation when
the patient is under treatment. Although the authors detected changes
in phonation measures, it is not clear whether the same approach is
suitable to detect changes in the general neurological state of PD pa-
tients. Additionally, the patients are assessed only during one month,
which is a very short period of time to detect changes in the neurolo-
gical state of the patients due to the disease progression. One of the
main constraints of addressing longitudinal studies with PD patients is
to have continuous contact with them. Thanks to the strong relation of
our Lab with the Parkinson’s Foundation in Medellín (goo.gl/ihwjLy)
we have had continuous contact with Parkinson’s patients and they
have been actively collaborating in our research activities. In Arias-
Vergara et al. (2016) our team addressed several experiments with the
GMM-UBM approach to model speech impairments developed by seven
PD patients. The speech of these patients were captured in several re-
cording sessions between 2012 and 2015. The results of that study
motivated us to continue addressing research in individual speaker
model methods to monitor symptoms of PD patients. Recently, in
García et al. (2017a) we introduced the use of the i-vector approach to
assess the neurological state of a group with 50 PD patients. Similarly,
in García et al. (2017b) speech impairments of PD patients speaking
three different languages (Spanish, German, and Czech) were evaluated
considering the i-vector approach. The results indicate that this method
is suitable to be applied in different languages. Although the results
were promising, those studies were focused on evaluating correlations
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between a given clinical scale (MDS-UPDRS-III or m-FDA) and the re-
sult of a model. In this paper we decided to continue working on this
topic but applying the GMM-UBM and i-vector approaches for the in-
dividual monitoring of the progression of speech impairments devel-
oped by PD patients.

1.2.5. Parkinson’s speech evaluation considering non-controlled acoustic
conditions

The analysis of PD from voice signals recorded in different acoustic
conditions has not been extensively addressed in the literature.
In Tsanas et al. (2012), speech recordings of 52 PD patients are trans-
mitted over a simulated mobile telephone network. The authors aimed
to estimate the UPDRS scores considering features extracted from sus-
tained phonations of the vowel /a/. Although the aim was very inter-
esting and revolutionary by that time, the results reported in the study
were biased because the authors mixed recordings of train and test
speakers into the same set, thus the main question regarding the suit-
ability of voice analysis for PD detection remained unanswered. Ad-
ditionally, besides the necessity of assuring the speaker independence,
experiments with continuous speech signals are required in order to
extend the application of those approaches to real-world scenarios.
Recently, in Vásquez-Correa et al. (2017), researchers from our Lab
evaluated the effects of background noise, different distortion levels,
and telephone codecs in the automatic classification of PD vs. HC
speakers. The results indicated that background noise has the strongest
effect in the classification accuracy. The effect of telephone channels
was not critical, except for the mobile channel, where the low bit-rate
codecs caused an important reduction in the classification accuracy.

1.2.6. Contribution of this study
This paper considers speech signals of people suffering from PD

recorded during several sessions from 2012 to 2016, i.e., longitudinal
study. As a group of speakers is recorded several times, those recordings
are suitable to develop a system to model individual changes in the
speech of PD patients. Acoustic conditions of those recordings were
different between sessions, thus this corpus represents a real-world
scenario to study the neurological state of PD patients from speech in
real acoustic conditions. Two approaches are explored here, one is
based on GMM–UBMs and the other one is based on i–vectors. Both
methods are trained considering different aspects of speech: phonation,
articulation, and prosody. Additionally, in order to assess the suitability
of the approaches in different acoustic and communication conditions,
five different communication channels are considered: sound proof
booth, Skype®, Google Hangouts®, land-line, and mobile phone. Besides
those channels, the proposed approach is tested upon recordings cap-
tured in the house of the patients (the same group that is considered in
the longitudinal experiments). Those patients were recorded in 16
sessions during four months, i.e., one day per month, every two hours
during eight hours per day. As in the case of the longitudinal

recordings, the acoustic conditions were not controlled, thus this set
represents a real-world scenario for the study of the neurological state
of PD patients. To the best of our knowledge this is the first study in-
troducing and testing individual speaker models to monitor PD pro-
gression considering speech signals captured with different commu-
nication channels/codecs, and at-home recordings.

2. Materials and methods

2.1. Datasets

Three datasets are considered in this study, one is used to train the
models and the other two sets are considered to test. All of the parti-
cipants followed two speech tasks: (1) a monologue and (2) the reading
of a standard text. For the monologue, the speakers were asked to talk
about different topics such as hobbies, daily living activities, family,
and others. The reading task included a phonetically balanced text
which contains 36 words. The average duration of the monologues and
the standard text are presented in Table 1. Further details can be found
in Orozco-Arroyave et al. (2014).

2.1.1. Training set
This is formed with a subset of the PC-GITA database (Orozco-

Arroyave et al., 2014) which originally consists of 100 speakers (50 PD
patients and 50 HC). The subset includes all of the 50 healthy speakers
and 44 PD patients. The remaining 6 speakers are included in the test
sets because they participated in further recording sessions and we did
not want to lose the chance of including them in individual speaker
models. None of the participants in the HC group has history of
symptoms related to PD or any other kind of movement and mental
disorder. All of the speakers in PC-GITA were recorded in a sound-proof
booth with a sampling frequency of 44.1 kHz with a resolution of 16
bits. Different acoustic conditions are tested. The original signals were
transmitted and re-captured using four communication systems:
Skype®, Google Hangouts®, a landline, and a mobile phone.

All of the PD patients in the training set were evaluated by a neu-
rologist expert according to the MDS-UPDRS-III (due to cost-related
reasons healthy speakers were not considered for neurological evalua-
tions). Additionally, the dysarthria level of the patients and the healthy
speakers was evaluated by expert phoniatricians according to the m-
FDA (Orozco-Arroyave et al., 2018). The labeling process of the speech
recordings was performed by three phoniatricians who were asked to
agree on the evaluation of the first ten speakers at the beginning of the
process. The remaining recordings were independently evaluated per
each phoniatrician. The inter–rater reliability is 0.86. The statistical
difference among labels per class (PD and HC) is evaluated by means of
the F-statistics of an analysis of variance (ANOVA) test and the results
show significant differences between the m–FDA labels of PD and HC
speakers, i.e., =F 175.49, p< .001 for all speakers, =F 66.81, p< .001

Table 1
Description of the training set. PD patients: Parkinson’s disease patients. HC: healthy controls.

PD patients Healthy speakers

male female male female

Number of speakers 22 22 25 25
Age [years] (mean ± standard deviation) 61.3 ± 12.3 61.9 ± 7.3 60.5 ± 11.4 61.4 ± 6.9
Range of age [years] 33–81 49–75 31–86 49–76
Disease duration [years] (mean ± standard deviation) 9.2 ± 6.0 13.0 ± 12.0
Range of disease duration [years] 0.4–20 1–43
m-FDA (mean ± standard deviation) 31.2 ± 8.1 32.0 ± 10.1 7.6 ± 7.3 5.1 ± 9.1
Range of m-FDA 17–41 13–51 0–29 0–25
MDS-UPDRS-III (mean ± standard deviation) 40.7 ± 21.5 37.5 ± 15.2
Range of the MDS-UPDRS-III scores 9–92 19–71
Average duration of the monologues (in seconds) 47.2 ± 26.4 41.5 ± 20.6 43.1 ± 30.9 54.4 ± 27.3
Average duration of the read texts (in seconds) 18.6 ± 5.9 18.6 ± 6.9 17.5 ± 3.2 18.3 ± 4.2
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for female speakers, and =F 52.13, p< .001 for male speakers. Table 1
summarizes the information of speakers in the training set.

2.1.2. Longitudinal test set
Speech recordings of 7 patients were collected in five recording

sessions from 2012 to 2016. In 2012 (June), 2014 (June), 2015
(February), 2015 (August), and 2016 (February). A professional audio
setting was used for the first two sessions and the patients were asked to
come to the clinic to perform the speech tasks and the neurological
screenings. However, this represented a limitation for some patients
due to their motor complications. Thus, for the remaining sessions, the
recordings were performed in the Parkinson’s Foundation in Medellín.
The first recording session includes those six patients who were ex-
cluded from PC-GITA to form the training set. An additional speaker
(P2) who was not part of PC-GITA is included in the other four re-
cording sessions (LS2 to LS5). The average duration of the monologues
and the read texts were 110.2 ± 42.9 s and 17.2 ± 3.8 s, respec-
tively. The MDS-UPDRS-III labels of the third recording session (LS3)
are not available. The speakers in this longitudinal set were recorded in
non-controlled acoustic conditions using an open development platform
called ODROID-U2 with an ARM Cortex-A9 quad core processor, and
2GB of RAM memory. The ODROID-U2 includes an audio codec
MAX98090 which operates with up to 24 bits. Further details can be
found in Vásquez-Correa et al. (2015). Table 2 indicates the MDS-
UPDRS-III and the m-FDA labels assigned to the patients of the long-
itudinal test set. Age and gender are also provided.

2.1.3. At-home test set
The same group of seven patients considered in the longitudinal test

set was recorded four times per day (every two hours), once per month
during four months. Thus, there is a total of 16 recording sessions per
patient. The participants were recorded in their homes with the same
device used for the longitudinal test set (Vásquez-Correa et al., 2015).
The speech recordings were collected in 2016. The average duration of
the monologues and the read texts were 119.2 ± 57.2 s and 18.2 ±
4.1 s, respectively. As it was not possible to have a neurologist expert
during all day long with each patient, the at-home test set does not have
MDS-UPDRS-III scores. The speech recordings of this set were evaluated
by one of the phoniatricians who participated in the labeling process
with the m-FDA scale. Table 3 indicates the dysarthria scores of the
patients in the at-home test set.

2.2. Methods

The original speech signals of the training set were recorded in a
sound proof both (PC-GITA database). Then, we re-captured the speech
recordings through Skype® calls, Google Hangouts® conversations,
landline calls, and mobile phone calls. Three speech aspects: phonation,
articulation, and prosody, are modeled and tested considering three
different approaches: SVR, GMM–UBM, and i–vectors. Five different
models are created, one per communication channel. Spearman’s cor-
relation coefficients are used to evaluate the results of the at-home test

sets; however, in the longitudinal test set the Pearson’s correlation
coefficient was used due to the reduced amount of recording sessions.
Additionally, the Mean Squared Error (MSE) is computed to evaluate
the capability of the speaker models to monitor speech-related pro-
blems due to PD. The general methodology to create and test the
speaker models is summarized in Fig. 1. In the first stage, one patient is
selected to be modeled/tested and the remaining speakers are con-
sidered for training the reference model. Afterwards, voiced/unvoiced
segments and onset/offset transitions are segmented from the speech
recordings. Different features are computed upon the segments de-
pending on the modeled speech aspect (phonation, articulation, or
prosody). The measures extracted from the training set are used to
create the UBM. The set of features extracted from the recordings of the
patient who is being monitored is used to obtain an individual model
which is adapted from the UBM. Finally, the disease progression (in
terms of the neurological state or the dysarthria level) is evaluated
calculating the distance between the UBM and the speaker model. The
proposed approach is compared with respect to a regression model,
which has been the typical way of addressing the problem introduced in
this paper. The next subsections provide details of the methods applied
on each stage of the methodology.

2.2.1. Segmentation
The speech production mechanism involves different subsystems

mainly formed with muscles and structures in the vocal tract. The
phonatory subsystem is in charge of producing voiced sounds by taking
the airflow from the lungs to make the vocal fold vibrate. The articu-
lation subsystem involves the movement and control of different
structures and muscles in the vocal tract including tongue, jaw, lips,
and velum. This subsystem is involved in the production of voiced and
unvoiced sounds like plosive and nasal consonants. When unvoiced
sounds are produced there is no vocal fold vibration and those sounds
are generated by turbulent airflow at a constriction in the vocal tract.
During the production of the voiced segments the vibration of the vocal
fold follows four stages in one cycle: (1) closed, (2) opening, (3) open,
and (4) closing. Fig. 2 shows these stages.

There are several frequency and amplitude perturbation patterns
which are observable during the production of vocal sounds. Those
perturbations result from different factors such as the vocal fold
asymmetry, involuntary movements at the larynx (neurogenic factors),
and fluctuations of the airflow and subglottal pressure (Benesty et al.,
2007). On the other hand, the unvoiced segments are produced by a
total constriction at certain place in the vocal tract resulting in the
interruption of the airflow. Unvoiced sounds are also produced by
narrowing the air path producing turbulent airflow which creates noise-
like signals (Stevens, 2000).

The method used in this work to identify voiced and unvoiced
segments is based on the presence of the fundamental frequency of
speech (pitch) in short-time frames as it was shown in Orozco-Arroyave
et al. (2016a). Fig. 3.A shows the pitch contour (red line) obtained from
a voice recording. It can be observed that voiced segments are quasi-
periodic signals, while the unvoiced segments are noise-like signals.

Table 2
General information of patients in the longitudinal test set. LSi: ith longitudinal session (LSi,i∈ …{1, 2, ,5}).

MDS-UPDRS-III m-FDA (longitudinal)

Patients (Pi) Age Gender LS1 LS2 LS3 LS4 LS5 LS1 LS2 LS3 LS4 LS5

P1 70 M 14 25 – 7 15 37 22 18 23 31
P2 57 M – 58 – 63 51 – 34 25 34 35
P3 67 M 28 19 – 13 24 31 15 17 16 23
P4 59 F 41 35 – 33 33 29 39 24 21 40
P5 56 F 29 26 – 26 30 23 26 16 16 14
P6 52 F 38 49 – 44 45 14 20 1 12 15
P7 61 M 6 8 – 24 21 21 36 12 13 17
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Onset and offset transitions are considered to model difficulties of
the PD patients to start and to stop a movement like the vocal fold
vibration (Fig. 3.B) (Orozco-Arroyave, 2016). Those transitions are
produced by the combination of different sounds during the continuous
speech production.

2.2.2. Feature extraction
Voiced/unvoiced segments and onset/offset transitions are used to

analyze speech impairments in PD patients considering phonation,

prosody, and articulation measures. Features extracted from the voiced
segments are considered to model the temporal and amplitude variation
of the vocal fold vibration. Prosodic impairments are modeled con-
sidering pitch and energy contours extracted from the voiced segments.
Articulation impairments are modeled considering spectral measures
and the energy content of the onset/offset transitions. Phonation and
articulation features were extracted using the software presented in
Orozco-Arroyave et al. (2018).

2.2.3. Phonation features
The evaluation of phonation impairments in continuous speech is

performed extracting voiced segments from the monologues and the
read texts. The set of features include temporal and amplitude varia-
tions of the pitch period, i.e., jitter and shimmer, respectively. Further,
the first and second derivatives of the pitch contour are considered to
analyze the temporal variability of the fundamental frequency.

2.2.4. Prosodic features
Prosody is analyzed considering pitch and energy-based features

extracted from the voiced segments. The set of features is computed

Table 3
Dysarthria scores of the at-home test set. Hi, i ∈ {1, 2, .., 16}: m–FDA scores of the sixteen recording sessions.

m-FDA (At-home)

Patients (Pi) Age Gender H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

P1 70 M 25 25 25 23 21 27 27 27 27 27 27 27 22 21 22 22
P2 57 M 37 38 35 35 35 38 35 37 37 27 39 37 36 36 37 39
P3 67 M 23 23 23 6 23 14 12 12 12 17 22 23 28 22 16 16
P4 59 F 33 34 34 34 33 33 33 33 33 34 36 36 41 41 41 41
P5 56 F 27 25 25 25 31 29 29 29 29 29 31 31 39 39 37 39
P6 52 F 13 13 13 13 13 13 13 13 15 15 15 15 16 14 14 14
P7 61 M 23 24 24 23 26 26 25 25 26 26 26 26 26 25 24 24

Fig. 1. General methodology to build the speaker models and estimate their degree of impairment.

Fig. 2. Vocal folds vibration pattern during voiced segments (Based on a figure
found in Benesty et al., 2007).

Fig. 3. (A) Pitch contour (red line) and voiced/unvoiced short time windows extracted from a speech signal. (B) Onset and offset transition frames. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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based on the methodology presented in Dehak et al. (2007). A 5-degree
polynomial function is fit to the pitch and energy contours, separately.
Then, the 6 coefficients of each fitted curve are used to model prosodic
features such as the mean pitch/energy of the voiced segment, the slope
of the contour, and the curvature of the pitch/energy contours. Ad-
ditionally, the duration of each voiced segment is considered to form a
13-dimensional feature vector.

2.2.5. Articulation features
The articulatory capability of the patients is evaluated considering

information from the onset/offset transitions. The set of features in-
cludes 12 Mel-Frequency Cepstral Coefficients (MFCCs), which com-
prises a smoothed representation of the speech spectrum considering
information of the human auditory system, mainly the critical-band
frequency resolution. These features are widely used to model articu-
latory problems in the vocal tract (Godino-Llorente et al., 2006). Ad-
ditionally, in order to incorporate valuable information evidenced in
psychoacoustic experiments (Zwicker and Terhardt, 1980; Hermansky
et al., 1985; Smith and Abel, 1999), the log energy of the signal dis-
tributed in 22 Bark bands are extracted from the onset/offset transi-
tions.

2.2.6. Regression model
The baseline to estimate the disease severity according to the

m–FDA and MDS-UPDRS-III scales (y) is calculated based on a radial
basis Support Vector Regressor (SVR) with an ε-insensitive loss func-
tion, i.e., ε–SVR. The estimation ( ̂y ) is measured with an ε-insensitive
loss function ̂L y y( , ), which ensures the existence of the global
minimum, and it is computed with Eq. (1).

̂ ̂
̂=⎧

⎨⎩

− ≤
− −

L y y
y y

y y
( , ))

0 if ɛ
ɛ otherwise (1)

The feature vectors x are mapped into a m-dimensional feature space
using a linear kernel g(x). The estimated values ̂y , with weights ω, and
bias b, are estimated using Eq. (2).

̂ ∑= +
=

xy ω g b( )
j

m

j j
1 (2)

The performance is evaluated using the Spearman’s correlation coeffi-
cient between the estimated values and the clinical labels.

2.2.7. Speaker models
This paper introduces the use of Gaussian Mixture Models –

Universal Background Models (GMM–UBM) to quantify the disease
progression. These kind of models have been successfully used in
speaker recognition and verification tasks. The main hypothesis in this
work is that if the speech of a PD patient is changing due to the disease
progression, such a change should be modeled and quantified by a
GMM–UBM system. In this case, instead of comparing the speech of one
speaker with respect to a different one or to a group of speakers, the
idea is to compare the speech of one patient recorded in one moment
with respect to the speech of the same patient recorded in a different
moment. As PD is progressive and affects speech, any change in the
speech production should be captured by the proposed model.

The GMM–based systems are capable of representing arbitrary
probabilistic densities. GMMs are parametric probabilistic models re-
presented as a weighted sum of M Gaussian densities. For a D-dimen-
sional feature vector x a GMM is defined as:

∑=
=

x xp λ ω p( ) ( )
i

M

i i
1 (3)

The Gaussian densities pi(x) are parameterized by the mixture
weights ωi, a D× 1 mean vector μi, and a D×D covariance matrix Σi

(Reynolds et al., 2000). The parameters of the density models can be

denoted as =λ ω μ Σ( , , )i ii and the Gaussian densities as

= − − −−{ }x x xp
π Σ

μ Σ μ( ) 1
(2 )

exp 1
2

( ) ( )
i

i i
1

ii D
T

/2 1/2 (4)

In speech processing GMMs are used to represent the distribution of
feature vectors extracted from a single speaker or a group of speakers. If
the GMM is trained using features extracted from a large sample of
speakers, the resulting model is called Universal Background Model
(UBM). Therefore, the UBM is trained to represent the entire space of
possible speakers. For a given set of speakers, the conditional prob-
ability p(XUBM|λ) is known as the maximum likelihood function that
better represents the population of speakers, where XUBM are the set of
feature vectors extracted from the group of speakers. The parameters λ
of the maximum likelihood function can be estimated using the
Expectation Maximization (EM) algorithm. The EM approach is used to
increase the likelihood of the UBM, i.e., for iterations k and +k 1,

>+X Xp λ p λ( ) ( )k k( 1) ( ) . The model of the test speaker is derived from
the population of speakers by adapting the parameters of the UBM
using the Maximum A Posteriori (MAP) adaptation.

2.3. Identity vectors

This is another way of creating speaker models. This approach has
been extensively used in speaker verification and identification tasks.
An i–vector is defined in a single space called total variability space
which contains both the speaker and channel variabilities simulta-
neously (Dehak et al., 2011). The use of a total variability matrix was
motivated by Dehak and Najim (2010) after it was showed that channel
factors in Joint Factor Analysis (JFA) also contain information about
speakers.

In this approach the speaker supervector M is given by:

= +M T ωm (5)

where m is the channel- and speaker-independent super-vector (usually
the super-vector of the UBM), T is the total variability matrix which is
trained in the same way as the eigen-voice V matrix, and the compo-
nents of ω are the total factors, and ω itself is known as the identity
vector or i–vector.

According to Dehak et al. (2011), ω is defined by its posterior dis-
tribution conditioned to the Baum–Welch statistics. Given a sequence of
L frames ⋯y y y{ , , , }L1 2 and a UBM Ω composed of C mixture compo-
nents, the Baum–Welch statistics Nc and Fc of utterance u are given by:

∑=
=

N P c y( , Ω)c
t

L

t
1 (6)

∑=
=

F P c y y( , Ω)c
t

L

t t
1 (7)

where = ⋯c C1, , is the Gaussian index and P(c|yt, Ω) is the posterior
probability of mixture component c generating the vector yt.

The first-order Baum–Welch statistic centralized around the mean of
the UBM mixture component c (i.e., mc) is given by:

∑= −∼

=

F P c y y m( , Ω)( )c
t

L

t t c
1 (8)

Then, the identity vector ω for a given utterance u can be found as
follows:

= + ∼− − −ω I T N u T T F u( Σ ( ) ) Σ ( )t t1 1 1 (9)

where N(u) is a diagonal matrix whose diagonal blocks are Nc I, F u( ) is
a supervector that concatenates all of the first-order Baum-Welch sta-
tistics ∼Fc for a given utterance u, and Σ models the residual variability
not captured by the total variability matrix T.
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2.3.1. Distance computation: GMM–UBM
The neurological state and the dysarthria level of PD patients can be

assessed using the individual speaker models obtained from the
GMM–UBM approach. The resulting models are based on probabilistic
representations of the features described in Section 2.2.2. One way to
assess the changes in the speech of the patients consists of calculating
the Bhattacharyya distance. It is a probabilistic measure that considers
the weights, the mean vectors, and the covariance matrices of the UBM
and the speaker models. When GMM models are considered, the
Bhatthacharyya distance can be estimated as:
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Here = ∑ =ω ω ωln( )Bha i
M

i i
1
2 1 is the mixture weight measure, μi and Σi

are the mean vector and the covariance matrix of the UBM, μi and Σi are
the mean vector and covariance matrix of the speaker model (You et al.,
2010). The disease progression is evaluated by calculating the Bhatta-
charyya distance between the UBM and the speaker model. The details
of the procedure are depicted in Fig. 4.

2.3.2. Distance computation: i–vectors
Similar to the GMM–UBM approach, i–vectors are used to assess the

dysarthria level and neurological state of the patients over the time. In
this case the measure to estimate the disease progression is the dot
product (Eq. (11)) between the i–vectors extracted from patients and
speakers from the UBM.

=d
ω ω

ω ω
,

cos
UBM SPK

UBM SPK (11)

where ωUBM and ωSPK are the i–vectors extracted from the UBM and
each patient, respectively. ωUBM is the average i–vector calculated
considering the i–vectors of all of the speakers in the UBM. The details
of the procedure are depicted in Fig. 5.

2.3.3. Distances transformed to similarity measures
The speaker models are created with the aim of quantifying changes

of two clinical variables over the time: (i) the neurological state ac-
cording to the MDS-UPDR-III scale, and (ii) the dysarthria level ac-
cording to the m–FDA score. The performance of the proposed models is
evaluated with the Spearman’s and Pearson’s correlation coefficients
calculated between the estimated distance (Bhattacharyya or dot pro-
duct) and the corresponding scores (MDS-UPDRS-III or m–FDA). Those
correlation coefficients measure the relationship between two variables
in the interval −[ 1, 1], were the extreme values represent maximum

correlation. The computed distances per speaker model are transformed
into similarity measures using Eq. (12) (Gower and Legendre, 1986).

= −s d1i i (12)

where di, i∈ {1, 2, 3, .., 7} are the distances computed per speaker
model, using the GMM–UBM and i–vectors approaches. This transfor-
mation is performed to obtain positive values in all of the cases.

The three speech aspects introduced in Section 2.2.2 (phonation,
articulation, and prosody) are considered per patient, thus for each
speaker three different distances are computed. Those distances are
integrated in the multi-aspect coefficient ξ which is proposed in this
paper as indicated in Eq. (13)

=
+ + +

ξ
α β θphon pro art

1
1i

i i i (13)

where phoni, proi, and arti are the distances corresponding to the
phonation, prosody, and articulation aspects, respectively for the pa-
tient i. α, β, and θ are the weights of each aspect and are computed as
follows: the distances of six of the seven test speakers are considered to
train a linear regressor. The parameter associated to the regression line
is found and assigned as the weight for the seventh speaker which is the
person to whom the model is being tested. The procedure is performed
for all of the seven speakers in the test set.

2.4. Disease progression

Parkinson’s is a progressive disease, thus symptoms severity get
worse over the time. According to previous studies, the speech of PD
patients is impaired and such an impairment progresses with the dis-
ease (Skodda et al., 2013). The hypothesis is that these variations in the
speech of the patients may be reflected in the evaluation performed by
the phoniatrician. The goal of the speaker model is to identify changes
in the speech of the patient over the time. One way to achieve this aim
is to compute the distance between the UBM and the speaker model.
Since the distances are estimated considering the same speech record-
ings evaluated by the phoniatrician, it is expected that the trend of
those distances follows the trend of the m–FDA scores. Fig. 6 shows a
graphical representation of the described situation for the patient 1 in
the longitudinal data set (Table 2). The dotted black curve represents
the trend of the disease progression for the patient who was evaluated
in different sessions, and the gray curve represents the distances com-
puted from the speaker models.

2.5. Non-controlled acoustic conditions

Although the proposed approach seems to be convincing and ap-
propriate for the aforementioned tasks, it is necessary to test its suit-
ability in more realistic conditions. Considering that nowadays most of
the people have access to different communication ways, e.g., mobile

Fig. 4. Speaker modeling. PD progression in N recording sessions per patient: ∈ …n N{1, 2, 3, , }.
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phones, Skype®, Hangouts®, or landlines, we decided to include all of
these options in the experimental setup. The UBM models are trained
considering the above mentioned communication ways in order to
make the approaches more robust to different acoustic conditions.
Nevertheless, there may be a loss of information for particular sets of
features. For instance, during a mobile phone call speech signals are
sampled at 8 kHz, which limits the computation of the Bark energies to
17 frequency bands. Table 4 indicates the transmission rates of the five
communication channels used in the training process.

3. Experiments and results

3.1. Experiments with the at-home test set

Table 5 shows the results obtained when the SVR is used to estimate
the m–FDA scores for the at-home test set. Each row corresponds to the
Spearman’s correlation coefficient calculated between the estimated
scores and the real m–FDA. It can be observed that none of the results
were satisfactory. The highest correlations were obtained only for pa-
tient P1 when the articulation features were considered to train the
SVR. This can be likely explained because typically, SVRs are used to

estimate labels, e.g., the dysarthria level, of a group of speakers rather
than to monitor each patient individually. The results obtained with the
different communication channels indicate that the SVR does not seems
to be suitable to estimate the dysarthria level when the acoustic con-
ditions are not controlled.

Table 6 shows the Spearman’s correlation coefficients computed
between the Bhattacharyya based similarity measure and the m–FDA
scores assigned by the phoniatricians to the patients in the at-home test
set. Each row corresponds to the correlation coefficient obtained with
different GMM–UBMs created per speech aspect and communication
channel. It can be observed that the highest average correlations are
obtained with the GMM–UBMs trained with the articulation features.
Results in the last column of Table 6 (AVG) show that the average
performance of the speaker models per speech aspect is similar for all of
the communication channels, indicating that the proposed approach is
robust against non-controlled acoustic conditions and communication
channels. The best results are obtained with the articulation features
extracted from the original speech recordings ( =ρ 0.45). A similar re-
sult was obtained for the Skype® calls ( =ρ 0.44) with the lowest MSE
(1.07). This result can be explained due to several preprocessing stages
that are performed to the speech signals during Skype® calls, including
voice activity detection, filtering, jitter buffer, and noise reduction in
different frequency-bands.

Table 7 shows the Spearman’s correlation coefficients calculated
between the i–vectors based similarity measure and the m–FDA scores
for the at-home test set. Each row corresponds to the correlation coef-
ficient obtained with different i–vectors created for each speech aspect
and communication channel. Similar to the GMM–UBM approach, the
best results were obtained with the articulation features computed upon
the original speech recordings and the Skype® calls ( =ρ 0.41). As in the
previous case, this result suggests that Skype® is the most suitable
communication channel to perform the automatic and individual
monitoring of the dysarthria level of patients with PD. Note also that
the results obtained with the Mobile channel are relatively close to
those obtained with the Skype® calls. This could suggest that mobile
channels are also suitable to monitor the dysarthria level of patients;
however, since the recordings were collected in the house of the pa-
tients, the acoustic conditions were not noisy (like for instance being
outside), thus more research is still required to perform analyses based
on signals collected with mobile phones under completely non-con-
trolled acoustic conditions.

Besides the estimation of m-FDA scores considering each speech
aspect separately, we wanted to evaluate how much we can improve
when those aspects are combined. For the case of the GMM–UBM and
i–vectors approaches, we combined the information of the three aspects
using Eq. (13). For the case of the SVR, the three feature sets are con-
catenated calculating four functionals: mean, standard deviation,

Fig. 5. Speaker modeling. PD progression in N recording sessions per patient: ∈ …n N{1, 2, 3, , }.

Fig. 6. Graphical representation of the progression of PD for patient 1. The
dotted black line represents the progression of the disease according to the
clinical score and the continuous gray line represents the progression obtained
with the speaker models.

Table 4
Transmission rates (kbps) for the five channels considered in this study.

Channel Mobile Landline Skype® Hangouts® Original
Transmission rate (kbps) 6.60–23.85 56 6–40 6–510 256
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skewness, and kurtosis. Table 8 shows the results when the three fea-
ture sets are combined. It can be observed that there is an improvement
in most of the cases, except for the SVR. The best results are obtained
when the speaker models are created using the GMM–UBM approach,
which can be explained because the computed distance (Battacharyya)
incorporates several characteristics of the model, i.e., mean vectors,
covariance matrices, and weights of the Gaussian mixture. This is
consistent with the previous results and confirms the suitability of the
approach to monitor the dysarthria level of PD patients. Note that the
highest correlation coefficients and the lowest MSE are obtained with
the Skype® calls ( =ρ 0.55 and MSE = 0.89) which indicates that the
speech aspects considered in this approach are not only complementary
but also being benefited from the preprocessing steps performed with
the Skype® codec. This is a very promising result because it opens the
possibility of developing automatic tools to monitor symptoms devel-
oped by PD patients using conventional Skype® calls.

For the case of the i–vectors, the distance between each speaker and
the UBM is computed using the dot product between the i–vector of the
speaker that is being monitored and the average i–vector computed
over all of the speakers in the UBM. We are aware of the fact that this
procedure may cause loss of information about the variability of the
models; however, as the proposed approach relies on the variability
captured in the UBM to evaluate deviations of the target speaker with
respect to the reference, we expect to capture enough variability in the
UBM such that the results are robust.

The results of the SVR in Table 8 clearly indicate that such an ap-
proach is not suitable to perform individual monitoring of speakers. The

main reason is because the regressor is trained to estimate the dysar-
thria level of a group of speakers but not a specific speaker. We think
that this result could be improved if individual regressors are trained
per patient. However, more recording sessions per speaker are neces-
sary to validate the suitability of that approach.

Fig. 7 displays curves with the comparison of the estimated m–FDA
scores (red lines) and the real labels assigned by the phoniatrician
(black lines). The x-axis represents the recording session. For the red
lines, the y-axis represents the normalized values of the multi-aspect
coefficient ξ, estimated according to Eq. (13). For the black lines, the y-
axis represents the normalized original m–FDA scores. The normal-
ization is performed using the z-score approach only for displaying
purposes, i.e., to depict comparable curves in the same figure. The
distances computed for each speaker model represent the progression of
the dysarthria level due to the disease progression. | scores follows the
trend of the dysarthria level in most of the cases. The largest differences
are observed in patients P3, P6 and P7 which are the speakers with the
lowest m–FDA score during the at-home recordings according to
Table 3. Fig. 7 suggests that the proposed approach is suitable to
monitor the progression of the dysarthria level in PD patients; however,
further research is required to include more patients and recording
sessions, and also to consider possible variation introduced by the
medication intake.

3.2. Experiments with the longitudinal test set – Dysarthria level assessment

Table 9 shows the results obtained with the SVR when the

Table 5
Spearman’s correlation coefficient (ρ) between the estimated scores and the m–FDA label per patient in the at-home test set (Pi). AVG: Average correlation per
communication channel. MSE: Average MSE per communication channel.

SVR Channel P1 P2 P3 P4 P5 P6 P7 AVG MSE

Original 0.78 −0.06 0.04 0.03 0.00 0.08 0.31 0.17 1.73
Skype® −0.24 −0.22 0.22 −0.40 0.20 −0.06 0.18 −0.05 2.03

Phonation Mobile −0.01 −0.27 −0.11 −0.55 0.14 −0.05 0.18 −0.10 2.14
Landline 0.06 −0.35 0.03 −0.04 0.04 −0.17 0.40 −0.00 1.96
Hangouts® −0.22 −0.41 0.09 −0.52 0.26 −0.18 0.08 −0.13 2.24
Original 0.73 −0.00 0.19 0.04 0.11 0.12 0.30 0.21 1.61
Skype® 0.39 0.24 −0.00 −0.03 0.02 −0.08 0.09 0.09 1.71

Prosody Mobile −0.20 0.55 −0.49 0.19 −0.18 0.06 0.12 0.01 1.97
Landline 0.20 0.01 0.11 0.33 −0.33 −0.01 0.00 0.04 1.93
Hangouts® 0.08 −0.12 −0.55 0.45 −0.46 −0.13 0.03 −0.10 2.19
Original 0.49 −0.39 0.03 −0.44 0.71 0.20 −0.00 0.09 1.75
Skype® 0.43 0.19 −0.07 −0.28 0.65 −0.06 0.24 0.16 1.69

Articulation Mobile 0.28 −0.37 0.01 −0.33 −0.70 −0.21 −0.23 −0.22 2.54
Landline 0.88 0.08 −0.04 −0.50 0.48 0.51 0.03 0.21 1.47
Hangouts® 0.55 −0.36 −0.17 0.24 −0.10 −0.49 −0.03 −0.05 2.01

Table 6
Spearman’s correlation coefficient (ρ) between Bhattacharyya-based similarity measure and m–FDA per patient in the at-home test set (Pi). AVG: Average correlation
per communication channel. MSE: Average MSE per communication channel.

GMM–UBM Channel P1 P2 P3 P4 P5 P6 P7 AVG MSE

Original 0.42 0.12 0.35 0.31 0.63 0.49 0.36 0.38 1.28
Skype® 0.80 0.50 0.15 0.32 0.26 0.41 0.37 0.40 1.22

Phonation Mobile 0.63 0.28 0.19 0.41 0.17 0.31 0.50 0.36 1.32
Landline 0.42 0.08 0.35 0.35 0.62 0.39 0.35 0.37 1.39
Hangouts® 0.72 0.56 0.03 0.53 0.16 0.42 0.23 0.38 1.36
Original 0.47 0.66 0.10 0.12 0.38 0.18 0.23 0.31 1.57
Skype® 0.33 0.16 0.15 0.31 0.42 0.38 0.36 0.30 1.45

Prosody Mobile 0.35 0.19 0.20 0.33 0.42 0.15 0.15 0.26 1.71
Landline 0.39 0.11 0.31 0.29 0.46 0.40 0.19 0.31 1.58
Hangouts® 0.29 0.09 0.40 0.06 0.54 0.26 0.39 0.29 1.52
Original 0.79 0.05 0.23 0.30 0.79 0.46 0.53 0.45 1.22
Skype® 0.73 0.12 0.00 0.47 0.83 0.50 0.41 0.44 1.07

Articulation Mobile 0.78 0.00 0.18 0.51 0.56 0.50 0.15 0.38 1.15
Landline 0.74 0.13 0.21 0.47 0.75 0.48 0.19 0.42 1.18
Hangouts® 0.76 0.33 0.10 0.01 0.80 0.39 0.45 0.41 1.26

T. Arias-Vergara et al. Speech Communication 101 (2018) 11–25

20



dysarthria levels of the speakers in the longitudinal test set are con-
sidered. As in the previous experiments with the at-home test set, this
result indicates that the SVR approach is not suitable to monitor the
individual progression of speech impairments developed by PD pa-
tients.

Table 10 shows the results of the GMM–UBMs created with pho-
nation, prosody, and articulation features, separately. It can be ob-
served that the average performance per channel is similar for the three
speech aspects. Note that the results in the longitudinal test set are
better than those obtained with the at-home test set. This can be likely
explained because several factors can change during the at-home re-
cordings: medication intake, mood, tiredness, and others. The estima-
tion of the dysarthria level in the longitudinal test set is like the analysis
of a “picture” taken approximately every six months. Thus, changes in
the speech of patients in the longitudinal set are mainly due to disease
progression, while changes in the at-home set are expected to be mainly

due to the effect of medication. Further research, with more recordings
collected at-home and information of the medication intake during the
day, is required to validate this hypothesis. Note also that the results in
Table 10 are similar among speech aspects and communication chan-
nels. This result could indicate that the approach based on GMM-UBM
models is robust to changing acoustic conditions over time. This is also
a promising result because it suggests that different communication
channels like Skype®, Hangouts®, Landlines, or Mobile phones, can be
used to perform longitudinal evaluations of the dysarthria level of PD
patients.

Table 11 shows results with the i-vectors extracted considering each
speech aspect and communication channel separately. The best results
are obtained with the articulation features which confirms the suit-
ability of the proposed approach to model articulation deficits exhibited
by PD patients mainly to start or stop the vocal fold vibration. Ad-
ditionally, as in previous results Skype® calls show the highest

Table 7
Spearman’s correlation coefficient (ρ) between the i–vector-based similarity measure and the m–FDA score per patient in the at-home test set (Pi). AVG: Average
correlation per communication channel. MSE: Average MSE per communication channel.

i–vectors Channel P1 P2 P3 P4 P5 P6 P7 AVG MSE

Original 0.56 0.02 0.28 0.02 0.04 0.04 0.26 0.17 1.81
Skype® 0.06 0.27 0.20 0.31 0.11 0.12 0.14 0.17 1.83

Phonation Mobile 0.59 0.06 0.12 0.01 0.01 0.05 0.11 0.14 1.83
Landline 0.34 0.57 0.13 0.53 0.27 0.12 0.16 0.30 1.76
Hangouts® 0.28 0.01 0.30 0.04 0.36 0.23 0.14 0.19 1.81
Original 0.61 0.36 0.16 0.25 0.24 0.31 0.30 0.32 1.28
Skype® 0.15 0.05 0.48 0.18 0.41 0.14 0.11 0.22 1.43

Prosody Mobile 0.73 0.10 0.34 0.02 0.27 0.38 0.15 0.28 1.43
Landline 0.45 0.33 0.02 0.26 0.30 0.37 0.27 0.29 1.50
Hangouts® 0.53 0.49 0.11 0.39 0.43 0.08 0.22 0.32 1.23
Original 0.64 0.71 0.22 0.30 0.14 0.53 0.31 0.41 1.18
Skype® 0.33 0.05 0.39 0.51 0.74 0.35 0.49 0.41 1.27

Articulation Mobile 0.49 0.21 0.27 0.31 0.77 0.34 0.28 0.38 1.22
Landline 0.62 0.08 0.11 0.35 0.72 0.29 0.00 0.31 1.27
Hangouts® 0.28 0.00 0.51 0.48 0.66 0.27 0.05 0.32 1.28

Table 8
Spearman’s correlation coefficient (ρ) between the multi-aspect coefficient ξ and m–FDA per patient in the at-home test set (Pi). AVG: Average correlation per
communication channel. MSE: Average Mean Squared Error.

Model Channel P1 P2 P3 P4 P5 P6 P7 AVG MSE

Original 0.46 −0.49 0.18 −0.35 −0.01 0.26 0.12 0.02 1.85
Skype® 0.39 0.21 −0.20 −0.29 0.61 −0.07 0.20 0.12 1.72

SVR Mobile 0.82 −0.01 −0.09 −0.37 0.37 0.10 0.37 0.17 1.99
Landline −0.08 −0.03 0.16 −0.15 0.07 0.23 −0.12 0.01 1.47
Hangouts® 0.30 −0.15 −0.29 −0.18 0.05 −0.00 −0.06 −0.05 2.14
Original 0.62 0.44 0.22 0.31 0.86 0.44 0.39 0.47 1.07
Skype® 0.76 0.54 0.19 0.46 0.86 0.48 0.54 0.55 0.89

GMM–UBM Mobile 0.61 0.25 0.24 0.67 0.77 0.29 0.26 0.44 1.26
Landline 0.73 0.57 0.06 0.40 0.87 0.56 0.47 0.51 1.00
Hangouts® 0.70 0.49 0.23 0.50 0.45 0.66 0.30 0.48 1.22
Original 0.63 0.53 0.12 0.46 0.14 0.48 0.30 0.38 1.14
Skype® 0.26 0.00 0.33 0.67 0.58 0.34 0.61 0.40 1.26

i–vectors Mobile 0.54 0.24 0.36 0.41 0.77 0.31 0.27 0.41 1.13
Landline 0.68 0.07 0.22 0.63 0.46 0.49 0.23 0.38 1.40
Hangouts® 0.59 0.32 0.28 0.45 0.66 0.39 0.34 0.43 1.04

Fig. 7. Curves of the dysarthria level per patient (Pi) in the at-home test set. Comparison of the m-FDA scores estimated using GMM–UBM with the Skype® recordings
(red lines) and the original m–FDA values assigned by the phoniatricians (black lines) for the at-home test set. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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correlation coefficient and the lowest MSE value. This result supports
the fact that this communication channel is the most suitable (among
the four that were tested in this paper) to perform unobtrusive mon-
itoring of the dysarthria level in speech of patients with PD.

Note that the GMM–UBM approach is better than the others when
phonation and prosody features are considered, while the i–vectors
approach is better when the speech signals are modeled with the ar-
ticulation features. Although the difference in the results obtained with
these two approaches using articulation and prosody features is not
high, the use of i–vectors seem to be more convenient when the re-
cording conditions are not controlled.

Besides the analysis of each speech aspect separately, it is also in-
teresting to evaluate the usefulness of their combination. In order to do
that we use the multi-aspect coefficient ξ introduced in Eq. (13).
Table 12 shows the Pearson’s correlation coefficients between ξ and the
original m–FDA scores in the longitudinal test set. Note that similar to
the results obtained in the at-home test set, there is an improvement
when the distances are combined. In this case, the highest correlation is
achieved with the i–vectors extracted considering the original speech
recordings ( =r 0.77, MSE = 0.47) and the second highest correlation is
obtained with the Skype® calls. Note that these results are better than
those obtained in the experiments with the at-home test set. As it was
mentioned above, this is because the time between sessions in the at-
home test set is much shorter than the time between sessions in the
longitudinal test set, thus the disease progression is more evident and
hence more accurately modeled in the longitudinal than in the at-home
test set. Note also that acoustic changes between recording session in

the longitudinal set could have been more severe than those in the at-
home recordings. This could explain why i–vectors show better results
than the GMM–UBM models in the longitudinal test set.

Fig. 8 shows the trends obtained when the m–FDA scores are esti-
mated with the ξ coefficient with speech aspects modeled using i–vec-
tors (red lines). The values of the m-FDA (black lines) correspond to the
median of the original scores assigned by the phoniatricians. The x-axis
indicates the five recording sessions of the longitudinal dataset. This
figure displays only the best results which are based on i-vectors ex-
tracted from the original recordings, i.e., without any transmission over
telephone or Internet channels. Note that, as in the case of the at-home
test set, the patient that exhibit the largest differences between the
estimated and the original m–FDA scores are P6 and P7. This result is
also consistent with the scores indicated in Table 2 where it can be
observed that these two patients have the lowest m–FDA scores, thus
they exhibited less impact of dysarthria than the rest of the speakers.

3.3. Experiments with the longitudinal test set – Neurological evaluation

Besides the evaluation of the dysarthria level, the neurological state
of the patients in the longitudinal test set is considered (neurological
evaluations are not available for the at-home test set). In this case, the
Pearson’s correlation coefficient (r) is estimated between the multi-as-
pect coefficient ξ and the MDS-UPDRS-III scores assigned by the neu-
rologist. The influence of the five communication channels is also
evaluated and the results per patient are included in Table 13.

Note that these results are not as good as those obtained when

Table 9
Pearson’s correlation coefficient (r) between the estimated scores and the m–FDA score per patient in the longitudinal test set (Pi). AVG: Average correlation per
communication channel. MSE: Average Mean Squared Error.

SVR Channel P1 P2 P3 P4 P5 P6 P7 AVG MSE

Original −0.40 0.32 0.00 0.70 0.36 0.50 −0.40 0.15 1.75
Skype® 0.10 −0.32 0.30 −0.70 −0.46 −0.50 −0.50 −0.30 1.84

Phonation Mobile −0.10 −0.63 0.70 −0.40 −0.62 −0.20 −0.50 −0.25 1.92
Landline 0.50 0.32 −0.30 −0.20 −0.46 −0.90 −0.60 −0.23 2.02
Hangouts® 0.20 0.63 0.10 −0.70 −0.62 0.50 −0.50 −0.06 2.04
Original −0.80 −0.63 −0.50 0.70 0.62 −0.70 0.60 −0.10 2.09
Skype® −0.13 −0.52 −0.20 −0.02 0.49 −0.41 0.72 −0.01 2.02

Prosody Mobile −0.50 0.95 −0.60 −0.30 −0.62 −0.60 0.10 −0.22 2.32
Landline 0.10 0.32 −0.10 1.00 −0.82 −0.20 0.00 0.04 2.19
Hangouts® −0.05 −0.28 0.49 −0.69 −0.48 0.04 −0.01 −0.14 2.28
Original −0.70 0.32 −1.00 0.30 −0.72 −0.20 0.40 −0.23 2.53
Skype® −0.20 −0.32 −0.70 0.10 −0.62 −0.10 −0.60 −0.35 2.61

Articulation Mobile 0.70 0.32 0.00 −0.10 0.36 0.30 0.80 0.34 1.14
Landline −0.30 −0.32 −0.90 −0.50 0.31 −0.20 0.10 −0.26 2.30
Hangouts® −0.40 −0.63 −0.50 −0.30 0.10 0.30 −0.50 −0.28 2.47

Table 10
Pearson’s correlation coefficient (r) between the Bhattacharyya-based similarity measure and the m–FDA score per patient in the longitudinal test set (Pi). AVG:
Average correlation per communication channel. MSE: Average Mean Squared Error.

GMM–UBM Channel P1 P2 P3 P4 P5 P6 P7 AVG MSE

Original 0.84 0.50 0.81 0.15 0.78 0.69 0.30 0.58 0.87
Skype® 0.51 0.20 0.26 0.78 0.92 0.38 0.35 0.49 1.10

Phonation Mobile 0.43 0.73 0.37 0.97 0.34 0.53 0.48 0.55 0.85
Landline 0.61 0.51 0.40 0.43 0.92 0.30 0.46 0.52 0.90
Hangouts® 0.86 0.11 0.44 0.57 0.62 0.31 0.38 0.47 1.03
Original 0.10 0.65 0.31 0.34 0.66 0.91 0.93 0.56 0.90
Skype® 0.80 0.99 0.17 0.40 0.35 0.53 0.55 0.54 1.06

Prosody Mobile 0.85 0.54 0.63 0.40 0.30 0.73 0.31 0.54 0.92
Landline 0.87 0.85 0.32 0.89 0.24 0.19 0.41 0.54 0.92
Hangouts® 0.90 0.92 0.48 0.25 0.64 0.01 0.67 0.55 0.87
Original 0.46 0.62 0.23 0.48 0.93 0.42 0.69 0.55 1.08
Skype® 0.71 0.25 0.71 0.42 0.23 0.63 0.64 0.51 0.91

Articulation Mobile 0.39 0.84 0.04 0.69 0.39 0.68 0.90 0.56 0.94
Landline 0.36 0.77 0.24 0.25 0.94 0.94 0.72 0.60 0.78
Hangouts® 0.63 0.46 0.90 0.56 0.92 0.67 0.12 0.61 0.81
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evaluating the dysarthria level. This result was expected because the
m–FDA scale was designed to assess speech impairments that appear
due to dysarthria, while the MDS-UPDRS-III is typically used to assess
general motor symptoms in PD patients. Although the correlations are
not high, the results for P1, P2, P3, and P4 indicate that, to some extent,

the speech impairments modeled by the proposed approach have im-
pact in the general motor state of the patients. Although we could claim
that the proposed approach is promising to evaluate the neurological
state of PD patients, the main conclusion is that the use of multi-modal
approaches are required in order to obtain more accurate and reliable

Table 11
Pearson’s correlation coefficient (r) between the dot product-based similarity measure and the m–FDA score per patient in the longitudinal test set (Pi). AVG: Average
correlation per communication channel. MSE: Average Mean Squared Error.

i–vectors Channel P1 P2 P3 P4 P5 P6 P7 AVG MSE

Original 0.69 0.40 0.24 0.43 0.42 0.11 0.71 0.43 1.14
Skype® 0.11 0.58 0.58 0.43 0.36 0.44 0.15 0.38 1.33

Phonation Mobile 0.84 0.31 0.39 0.36 0.52 0.09 0.12 0.38 1.32
Landline 0.80 0.20 0.33 0.09 0.42 0.35 0.93 0.45 1.22
Hangouts® 0.79 0.08 0.32 0.36 0.60 0.95 0.42 0.50 1.54
Original 0.62 0.46 0.91 0.87 0.96 0.04 0.08 0.56 0.88
Skype® 0.81 0.55 0.64 0.35 0.81 0.04 0.05 0.46 1.07

Prosody Mobile 0.77 0.49 0.87 0.84 0.47 0.27 0.04 0.54 0.92
Landline 0.29 0.75 0.56 0.62 0.78 0.32 0.17 0.50 1.00
Hangouts® 0.17 0.04 0.53 0.82 0.93 0.18 0.63 0.47 1.06
Original 0.80 0.89 0.97 0.55 0.61 0.33 0.06 0.60 0.80
Skype® 0.49 0.39 0.75 0.41 0.79 0.94 0.76 0.65 0.70

Articulation Mobile 0.49 0.19 0.13 0.98 0.98 0.72 0.89 0.63 0.75
Landline 0.52 0.25 0.27 0.97 0.73 0.67 0.91 0.62 0.76
Hangouts® 0.66 0.78 0.41 0.87 0.70 0.20 0.43 0.58 0.85

Table 12
Pearson’s correlation coefficient (ρ) between the multi-aspect coefficient ξ and m–FDA per patient in the longitudinal test set (Pi). AVG: Average correlation per
communication channel. MSE: Average Mean Squared Error.

Model Channel P1 P2 P3 P4 P5 P6 P7 AVG MSE

Original −0.74 −0.57 −0.95 0.46 −0.50 −0.29 0.13 −0.35 2.70
Skype® 0.89 −0.94 −0.63 −0.21 −0.54 −0.09 −0.19 −0.24 2.49

SVR Mobile −0.08 0.52 0.26 −0.64 0.30 0.36 −0.42 0.04 1.91
Landline −0.57 −0.02 −0.79 0.21 −0.18 −0.56 0.21 −0.24 2.49
Hangouts® −0.50 0.23 −0.48 −0.91 −0.07 0.43 −0.38 −0.24 2.48
Original 0.85 0.76 0.74 0.26 0.95 0.85 0.36 0.68 0.64
Skype® 0.80 0.55 0.55 0.58 0.29 0.65 0.70 0.59 0.82

GMM–UBM Mobile 0.55 0.79 0.16 0.75 0.79 0.75 0.76 0.65 0.79
Landline 0.75 0.90 0.40 0.53 0.85 0.91 0.63 0.71 0.58
Hangouts® 0.82 0.60 0.89 0.51 0.86 0.63 0.15 0.64 0.73
Original 0.81 0.94 0.88 0.65 0.96 0.39 0.75 0.77 0.47
Skype® 0.73 0.80 0.96 0.53 0.87 0.82 0.50 0.74 0.52

i–vectors Mobile 0.68 0.43 0.44 0.97 0.88 0.81 0.55 0.68 0.64
Landline 0.51 0.24 0.34 0.85 0.79 0.60 0.81 0.59 0.81
Hangouts® 0.49 0.47 0.53 0.89 0.84 0.13 0.67 0.54 0.93

Fig. 8. Curves of the dysarthria level per patient (Pi) in the longitudinal test set. Comparison of the m-FDA scores estimated using i–vectors with the original
recordings (red lines) and the original m–FDA values assigned by the phoniatricians (black lines). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 13
Pearson’s correlation coefficients (r) estimated between ξ calculated using i–vectors and MDS-UPDRS-III per patient in the longitudinal test set (Pi). AVG: Average
correlation per communication channel. MSE: Average Mean Squared Error.

Channel P1 P2 P3 P4 P5 P6 P7 AVG MSE

Original 0.31 −0.85 0.93 0.40 −0.35 0.65 0.08 0.17 1.38
Skype® 0.70 0.99 0.93 0.54 0.28 −0.03 0.41 0.55 0.89
Mobile 0.57 −0.77 0.94 −0.03 −0.57 0.63 −0.98 −0.03 1.98
Landline 0.82 0.20 0.69 −0.37 0.25 −0.33 −0.99 0.04 1.68
Hangouts® 0.88 0.28 0.49 0.42 −0.15 0.05 −0.77 0.17 1.36

T. Arias-Vergara et al. Speech Communication 101 (2018) 11–25

23



results.
Fig. 9 displays the trend of the estimated MDS-UPDRS-III and the

original labels assigned by the neurologist. Only the curves corre-
sponding to the best result (with the recordings captured using Skype®

calls) are displayed. As in the previous cases, the values are z-score
normalized to allow direct comparison between the trends of the two
curves. Red lines represent the estimated MDS-UPDRS-III scores and the
black lines represent the original MDS-UPDRS-III scores. The x-axis
includes four of the five recording sessions of the longitudinal set be-
cause there is no MDS-UPDRS-III score available for the third recording
session (see Table 2). Note that in this case the trends coincide in four of
the seven patients (P1, P2, P3, and P4). We did not find clinical or
demographic patterns to explain the reason for patients P5, P6, and P7
to be more deviated than the others; however we think that these re-
sults could be significantly improved in the near future when con-
sidering multi-modal approaches.

4. Conclusions

This study presented a methodology to monitor the progression of
speech impairments in PD patients using speaker models. Different
speech aspects (phonation, articulation, and prosody) were considered
to model different speech deficits exhibited by the patients. With the
aim of evaluating the suitability of the methods to perform remote
monitoring of speech impairments developed by patients with PD, the
speech recordings were re-transmitted through different communica-
tion channels (sound-proof booth, Skype®, Hangouts®, mobile phone,
and land-line). The results indicate that articulation features are the
most suitable to evaluate and monitor the dysarthria level of the pa-
tients. This can be explained because patients with PD typically exhibit
problems to start or to stop movements and the introduced approach is
designed to model problems to start or to stop the vocal fold vibration.
The results improved when the speech aspects are combined using a
multi-aspect coefficient that is proposed in this study. Skype® seems to
be the most appropriate communication channel to perform the remote
monitoring of the dysarthria level of PD patients. In general terms, the
results indicate that the proposed approaches are promising for the
continuous and unobtrusive monitoring of the progression speech def-
icits developed due to PD.

The results obtained when assessing the neurological state of the
patients are not satisfactory. This can be explained due to the fact that
the neurological scale comprises a total of 33 items to evaluate general
motor capabilities of the patients, but the speech is only considered in
one of those items. Further research is required in order to obtain more
conclusive and accurate results. We think that the inclusion of in-
formation from more bio-signals, i.e., multi-modal systems, will lead to
more accurate, stable, and conclusive results. We are currently working
on the construction of a dataset with different sensor-data and we ex-
pect to be able to improve the current results in the near future. Besides
the multi-modal modeling, the study of the variability in the speech of
PD patients due to the medication intake will be considered in future
works.

Acknowledgments

This project was funded by CODI at Universidad de Antioquia
(grants # PRV16-2-01 and 2015-7683). The work has received also
funding from the European Unions Horizon 2020 research and in-
novation programme under the Marie Sklodowska-Curie Grant
Agreement no. 766287. Tomás Arias-Vergara is under grants of
Convocatoria Doctorado Nacional-785 financed by COLCIENCIAS. The
authors would like to thank all of the patients and collaborators from
Fundalianza Parkinson Colombia. Without their support and contribu-
tion it would not be possible to address this research.

Ethical approval
All procedures performed in studies involving human participants

were in accordance with the ethical standards of the institutional and/
or national research committee and with the 1964 Helsinki declaration
and its later amendments or comparable ethical standards.
Additionally, the procedures were approved by the Ethics Committee of
Universidad de Antioquia and Clínica Noel, in Medellín, Colombia.

Informed consent
Informed consent was obtained from all of the persons who parti-

cipated in this study.

References

Arias-Vergara, T., Vásquez-Correa, J., Orozco-Arroyave, J., Vargas-Bonilla, J., Nöth, E.,
2016. Parkinson’s disease progression assessment from speech using GMM-UBM.
Proceeding of the 17th Annual Conference of the International Speech
Communication Association (INTERSPEECH). pp. 1933–1937.

Asgari, M., Shafran, I., 2010. Extracting cues from speech for predicting severity of
Parkinson’s disease. IEEE International Workshop on Machine Learning for Signal
Processing (MLSP). pp. 462–467.

Bayestehtashk, A., Asgari, M., Shafran, I., McNames, J., 2015. Fully automated assess-
ment of the severity of Parkinson’s disease from speech. Comput. Speech Lang. 29 (1),
172–185.

Benesty, J., Sondhi, M.M., Huang, Y., 2007. Springer Handbook of Speech Processing.
Springer Science & Business Media.

Cernak, M., Orozco-Arroyave, J., Rudzicz, F., Chirstensen, H., Vásquez-Correa, J., Nöth,
E., 2017. Characterization of voice quality of Parkinson’s disease using differential
phonological posterior features. Comput. Speech Lang. 46, 196–208.

Darley, F.L., Aronson, A.E., Brown, J.R., 1969. Differential diagnostic patterns of dysar-
thria. J. Speech Lang. Hear. Res. 12 (2), 246–269.

Dehak, N., Dumouchel, P., Kenny, P., 2007. Modeling prosodic features with joint factor
analysis for speaker verification. IEEE Trans. Audio Speech Lang. Process. 15 (7),
2095–2103.

Dehak, N., Kenny, P.J., Dehak, R., Dumouchel, P., Ouellet, P., 2011. Front-end factor
analysis for speaker verification. IEEE Trans. Audio Speech Lang. Process. 19 (4),
788–798.

Dehak, N., Najim, 2010. Discriminative and Generative Approaches for Long- and Short-
term Speaker Characteristics Modeling Application to Speaker Verification. Library
and Archives Canada.

Enderby, P.M., Palmer, R., 2008. FDA-2: Frenchay Dysarthria Assessment: Examiner’s
Manual. Pro-ed.

Eyben, F., Wöllmer, M., Schuller, B., 2010. Opensmile: the munich versatile and fast open-
source audio feature extractor. Proceedings of the 18th International Conference on
Multimedia. pp. 1459–1462.

García, N., Orozco-Arroyave, J., D’Haro, L., Dehak, N., Nöth, E., 2017. Evaluation of the
neurological state of people with Parkinson’s disease using i-vectors. Proceeding of
the 18th Annual Conference of the International Speech Communication Association
(INTERSPEECH). pp. 299–303.

García, N., Vásquez-Correa, J., Orozco-Arroyave, J.R., Dehak, N., Nöth, E., 2017.
Language independent assessment of motor impairments of patients with Parkinson’s
disease using i-vectors. Lect. Notes Comput. Sci. 10415, 147–155.

Godino-Llorente, J.I., Gomez-Vilda, P., Blanco-Velasco, M., 2006. Dimensionality

Fig. 9. Curves of the neurological level per patient (Pi). Comparison of the MDS-UPDRS-III scores estimated using i–vectors with the recordings of the Skype® calls
(red lines) and original MDS-UPDRS-III values assigned by the neurologist expert (black lines). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

T. Arias-Vergara et al. Speech Communication 101 (2018) 11–25

24

http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0001
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0001
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0001
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0001
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0002
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0002
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0002
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0003
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0003
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0003
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0004
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0004
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0005
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0005
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0005
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0006
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0006
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0007
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0007
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0007
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0008
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0008
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0008
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0009
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0009
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0009
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0010
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0010
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0011
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0011
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0011
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0012
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0012
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0012
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0012
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0013
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0013
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0013
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0014


reduction of a pathological voice quality assessment system based on Gaussian
mixture models and short-term cepstral parameters. IEEE Trans. Biomed. Eng. 53
(10), 1943–1953.

Goetz, C.G., et al., 2008. Movement disorder society-sponsored revision of the unified
Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric
testing results. Mov.Disord. 23 (15), 2129–2170.

Gómez-Vilda, P., Álvarez-Marquina, A., Rodellar-Biarge, V., 2015. Monitoring Parkinson’s
disease from phonation improvement by Log Likelihood Ratios. Bioinspired
Intelligence (IWOBI), Fourth International Work Conference on. pp. 105–110.

Gómez-Vilda, P., Vicente-Torcal, M.C., Ferrández-Vicente, J.M., Álvarez-Marquina, A.,
Rodellar-Biarge, V., Nieto-Lluis, V., Martínez-Olalla, R., 2015. Parkinson’s disease
monitoring from phonation biomechanics. Lect. Notes Comput. Sci. 9107, 238–248.

Gower, J.C., Legendre, P., 1986. Metric and Euclidean properties of dissimilarity coeffi-
cients. J.Classif. 3 (1), 5–48.

Grósz, T., Busa-Fekete, R., Gosztolya, G., Tóth, L., 2015. Assessing the degree of native-
ness and Parkinson’s condition using Gaussian processes and deep rectifier neural
networks. Proceeding of the 16th Annual Conference of the International Speech
Communication Association (INTERSPEECH). pp. 919–923.

Hermansky, H., Hanson, B., Wakita, H., 1985. Perceptually based linear predictive ana-
lysis of speech. Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP).

Ho, A.K., Iansek, R., Marigliani, C., Bradshaw, J.L., Gates, S., 1999. Speech impairment in
a large sample of patients with parkinson’s disease. Behav. Neurol. 11 (3), 131–137.

Hornykiewicz, O., 1998. Biochemical aspects of Parkinson’s disease. Neurology 51 (2),
S2–S9.

Orozco-Arroyave, J.R., 2016. Analysis of Speech of People with Parkinson’s Disease.
Logos Verlag Berlin, Germany.

Orozco-Arroyave, J.R., Arias-Londoño, J.D., Vargas-Bonilla, J.F., Gonzalez-Rátiva, M.C.,
Nöth, E., 2014. New Spanish speech corpus database for the analysis of people suf-
fering from Parkinson’s disease. Proceedings of the 9th International Conference on
Language Resources and Evaluation. pp. 342–347.

Orozco-Arroyave, J.R., Hönig, F., et al., 2016. Automatic detection of Parkinson’s disease
in running speech spoken in three different languages. J. Acoust. Soc. Am. 139 (1),
481–500.

Orozco-Arroyave, J.R., Vásquez-Correa, J.C., Hönig, F., Arias-Londoño, J.D., Vargas-
Bonilla, J.F., Skodda, S., Rusz, J., Nöth, E., 2016. Towards an automatic monitoring
of the neurological state of Parkinson’s patients from speech. Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp.

6490–6494.
Orozco-Arroyave, J.R., Vásquez-Correa, J.C., et al., 2018. NeuroSpeech: an open-source

software for Parkinson’s speech analysis. Digi. Signal Process. 77, 207–221.
Reynolds, D.A., Quatieri, T.F., Dunn, R.B., 2000. Speaker verification using adapted

Gaussian mixture models. Digit. Signal Process. 10 (1), 19–41.
Schuller, B., Steidl, S., et al., 2015. The INTERSPEECH 2015 computational para-

linguistics challenge: nativeness, Parkinson’s & eating condition. Proceeding of the
16th Annual Conference of the International Speech Communication Association
(INTERSPEECH). pp. 478–482.

Skodda, S., Grönheit, W., Mancinelli, N., Schlegel, U., 2013. Progression of voice and
speech impairment in the course of Parkinson’s disease: a longitudinal study.
Parkinsons Dis. 2013, 389195.

Smith, J.O., Abel, J.S., 1999. Bark and ERB bilinear transforms. IEEE Trans. Speech Audio
Process. 7 (6), 697–708.

Stevens, K., 2000. Acoustic Phonetics. Current Studies in Linguistics Series MIT Press.
Theodoros, D.G., Constantinescu, G., Russell, T.G., Ward, E.C., Wilson, S.J., Wootton, R.,

2006. Treating the speech disorder in Parkinson’s disease online. J. Telemed.
Telecare 12 (suppl 3), 88–91.

Tsanas, A., Little, M., McSharry, P.E., Ramig, L., 2010. Accurate telemonitoring of
Parkinson’s disease progression by noninvasive speech tests. IEEE Trans. Biomed.
Eng. 57 (4), 884–893.

Tsanas, A., Little, M., McSharry, P.E., Spielman, J., Ramig, L.O., 2012. Novel speech
signal processing algorithms for high-accuracy classification of Parkinson’s disease.
IEEE Trans. Biomed. Eng. 59 (5), 1264–1271.

Vásquez-Correa, J.C., Arias-Vergara, T., Orozco-Arroyave, J.R., Vargas-Bonilla, J.F.,
Arias-Londoño, J.D., Nöth, E., 2015. Automatic detection of Parkinson’s disease from
continuous speech recorded in non-controlled noise conditions. Proceedings of the
16th Annual Conference of the International Speech Communication Association
(INTERSPEECH). pp. 105–109.

Vásquez-Correa, J.C., Serra, J., Orozco-Arroyave, J.R., Vargas-Bonilla, J.F., Nöth, E.,
2017. Effect of acoustic conditions on algorithms to detect Parkinson’s disease from
speech. Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP)). pp. 5065–5069.

You, C.H., Lee, K.A., Li, H., 2010. GMM-SVM kernel with a Bhattacharyya-based distance
for speaker recognition. IEEE Trans. Audio Speech Lang. Process. 18 (6), 1300–1312.

Zwicker, E., Terhardt, E., 1980. Analytical expressions for critical-band rate and critical
bandwidth as a function of frequency. J. Acoust. Soc. Am. 68 (5), 1523–1525.

T. Arias-Vergara et al. Speech Communication 101 (2018) 11–25

25

http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0014
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0014
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0014
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0015
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0015
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0015
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0016
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0016
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0016
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0017
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0017
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0017
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0018
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0018
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0019
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0019
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0019
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0019
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0020
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0020
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0020
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0021
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0021
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0022
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0022
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0023
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0023
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0024
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0024
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0024
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0024
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0025
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0025
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0025
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0026
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0026
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0026
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0026
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0026
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0027
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0027
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0028
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0028
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0029
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0029
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0029
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0029
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0030
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0030
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0030
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0031
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0031
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0032
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0033
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0033
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0033
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0034
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0034
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0034
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0035
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0035
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0035
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0036
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0036
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0036
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0036
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0036
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0037
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0037
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0037
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0037
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0038
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0038
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0039
http://refhub.elsevier.com/S0167-6393(17)30445-4/sbref0039

	Speaker models for monitoring Parkinson’s disease progression considering different communication channels and acoustic conditions
	Introduction
	Motivation
	Parkinson’s disease: evaluation and monitoring
	Neurological evaluation
	Dysarthria level assessment
	Assessment of the neurological state from speech
	Longitudinal monitoring of PD from speech
	Parkinson’s speech evaluation considering non-controlled acoustic conditions
	Contribution of this study


	Materials and methods
	Datasets
	Training set
	Longitudinal test set
	At-home test set

	Methods
	Segmentation
	Feature extraction
	Phonation features
	Prosodic features
	Articulation features
	Regression model
	Speaker models

	Identity vectors
	Distance computation: GMM–UBM
	Distance computation: i–vectors
	Distances transformed to similarity measures

	Disease progression
	Non-controlled acoustic conditions

	Experiments and results
	Experiments with the at-home test set
	Experiments with the longitudinal test set – Dysarthria level assessment
	Experiments with the longitudinal test set – Neurological evaluation

	Conclusions
	Acknowledgments
	References




