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Abstract. Speech disorders are common symptoms among Parkinson’s
Disease patients. These disorders affect the speech of patients in differ-
ent aspects. Currently, there are few studies that consider the phono-
logical dimension of Parkinson’s speech. In this work we use a recently
developed method to extract phonological features from speech signals.
These features are based on the Sound Patterns of English phonological
model. The extraction is performed using pre-trained Deep Neural Net-
works to infer the probabilities of phonological features from short-time
acoustic features. An i-vector extractor is trained with these phonologi-
cal features. We classify patients and healthy speakers and evaluate the
dysarthria levels of the patients. This approach could be helpful to assess
new specific speech aspects such as the movement of different articulators
involved in the speech production process.
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1 Introduction

Parkinson’s disease (PD) is the second most common neuro-degenerative dis-
order worldwide after Alzheimer’s [1]. PD patients suffer several motor and
non-motor impairments. Among the motor symptoms, the most prominent are
tremor, rigidity, slowed movement, postural instability, lack of coordination and
different speech impairments. These symptoms limit the mobility and commu-
nication skills of patients, making it hard for them to attend appointments and
therapy, and to adequately convey their symptoms to their physicians and care-
givers [2]. Most PD patients develop hypokinetic dysarthria during the course
of the disease, which include a group of speech disorders such as reduced loud-
ness, monopitch, monoloudness, reduced stress, breathy, hoarse voice quality, and
imprecise articulation. The disease severity is evaluated by neurologist experts
following several tests. One of them is the Movement Disorder Society-Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) [3]. This is a perceptual scale
used to assess motor and non-motor abilities of PD patients. In the third section
of this scale, motor impairments are evaluated. As PD affects several aspects of
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speech [4], it makes sense to model motor capabilities from speech considering
different dimension such as phonation, articulation, prosody, and intelligibility [5,
6]. In recent years, the scientific community has been developing computer based
aids to help physicians with the detection and evaluation of the disease. Differ-
ent features extracted from the speech signal have been proposed to perform
this automatic analysis on different dimensions of the affected speech: Phona-
tion impairments in PD patients includes inadequate closing of the vocal fold
and vocal fold bowing [7], which generates stability and periodicity problems in
vocal fold vibration. Phonation in PD was automatically analyzed in [8], where
features related to perturbation, noise content, and non-linear dynamics were
used to evaluate whether the response of 14 PD patients to the Lee Silverman
voice treatment is acceptable or unacceptable. The authors considered only in-
formation from sustained vowels, and reported an accuracy close to 90% when
discriminating between acceptable vs. unacceptable utterances. The articulation
problems are mainly related with reduced amplitude and velocity of the articu-
lator movements [9], generating a reduced articulatory capability in PD patients
to produce vowels [10] and to produce continuous speech. In [5] the authors
modeled six different articulatory deficits in PD analyzing a diadochookinetic
speech task uttered by 24 Czech native speakers, and reported an accuracy of
88% discriminating between PD patients and HC speakers. Prosody refers to
intonation, loudness, and rhythm during continuous speech. Prosodic problems
in PD patients includes a decrease in loudness and low variations of pitch, which
is related to the frequency of vocal fold vibration (F0) [11, 12]. Prosody features
were computed in [13]. The authors consider voiced segments as speech unit to
compute features based on the F0 contour, energy contour, duration, and pitch
periods to classify PD patients and HC speakers, and to classify the patients
according to their neurological state in a 3-class approach (low, intermediate,
and severe) state. The authors reported an accuracy of up to 74 classifying
PD patients and HC speakers, and of 37% for the 3-class problem. Phonology
studies the sounds of a language, e.g., the pronunciation of words. Few studies
have analyzed the speech production of PD patients in phonological terms, and
they focus on evaluating phonology from a neurological point of view. This is in
part due to the difficulty in reliably estimate phonological features. Recently, a
method to reliably estimate phonological features was proposed in [14]. These
phonological features could be used in the analysis of dysarthric speech to as-
sess the movements and capacity of specific articulators and parts of the speech
production system. This method was used in [15] to evaluate the voice quality
of PD patients.

In this work, we propose to extract the phonological features with the pre-
viously mentioned method [14] and model them using the i-vector approach.
These will be referred to as phonological i-vectors. The proposed model is tested
in three scenarios: (1) the classification of PD patients vs. HC subjects, (2) the
assessmento of the neurological state of the patients following the MDS-UPDRS-
III scale, and (3) the assessent of the dysartrhia level of the patients followin a
modified version of the Frenchay Dysartrhia assessment (m-FDA) scale.
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2 Methods

2.1 Phonological Features

Phonological features were extracted using the deep learning approach from [14].
This process involves the following steps: (1) the speech signal is segmented into
short-time frames, (2) 13 MFCCs and their derivatives, are computed for every
frame of the speech signal, and (3) a set of 15 pre-trained DNNs infers the
phonological posteriors from the acoustic feature vector. These posteriors are
concatenated into a phonological feature vector zt. The process is summarized
in Figure 1, whereX is the set of acoustic features and Z is the set of phonological
features. A total of 15 phonological features are computed. Table 1 indicates a
brief description of each feature.

Table 1. List of phonological features

Feature Brief description
Vocalic Refers to the vocal folds vibration without constriction in the vocal tract.
Consonantal Indicates sounds where there is an obstruction of the vocal tract.
High The body of the tongue is above its neutral position.
Back The body of the tongue is retracted from its neutral position.
Low The body of the tongue is below its neutral position.
Anterior Indicates an obstruction located in front of the palato-alveolar region of the mouth.
Coronal The blade of the tongue is raised from its neutral position.
Round Refers to narrowed lips.
Rising Differentiates diphthongs from monophthongs.
Tense Indicates stressed vowels.
Voice Indicates voiced sounds.
Continuant Differentiates plosives from non-plosives.
Nasal Indicates a lowered velum, where the air to escape through the nose.
Strident Refers to sounds with more energy in high frequency components.
Silence Tells that there is no speech in the frame.
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Fig. 1. Phonological feature extraction process (adapted from [14])
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2.2 i-vector extraction

In the i-vector approach, factor analysis is used to define a new low-dimensional
space known as the total variability space. Initially, for speaker verification ap-
plications, this space had the aim of modeling the speaker and the channel vari-
ability [16]. In pathological speech analysis applications, the speaker variability
carries the information about the disorders in speech due to the disease.

The extracted i-vectors are processed in five steps: (1) the i-vectors com-
puted from utterances of the same speaker are averaged to obtain one i-vector
per speaker, (2) a whitening is process is applied by subtracting the mean of
the training i-ivectors and performing a Principal Component Analysis [17]. No
further processing such as PLDA is applied to the i-vectors as all the speech
signals used in this study were recorded in similar acoustic conditions.

2.3 Classification methods

Cosine distance threshold The score computed from a test signal is compared
with respect to a threshold θ. The score used in the i-vector approach is the
average cosine distance. The cosine distance is used to compare two i-vectors. It
considers only the “angle” between two i-vectors. In this case, the average cosine
distance to a reference set of i-vectors is computed according to Equation 1.

score(wtest,j) =
1

N

N∑
i=1

Ci
wtest,j · wref,i

||wtest,j ||||wref,i||
(1)

where Ci is the condition label of the reference i-vector: 1 for HC and −1
for PD patients. The larger the distance to the HC means the more affected the
speech. With this is in mind, the condition is if score(wtest,j) > θ it is considered
from a PD patient. Also taking the previous argument into consideration, the
threshold was set at θ = 0. No parameters needed to be optimized for this
method.

Support Vector Machines (SVMs) The goal of a SVM is to discriminate
data points by using a separating hyperplane which maximizes the margin be-
tween two classes. A soft margin Support Vector Machine (SVM) with Gaussian
kernel is used to classify PD vs. HC subjects. Two hyper-parameters need to be
optimized in this classifier: the margin cost C and the bandwidth of the Gaussian
kernel γ. Details of this optimization are given in Section 4.

2.4 Evaluation of the neurological state

The prediction of the neurological state and the dysarthria level are evaluated
with the Spearman’s correlation between the real score and the score given by
equation 1. In this case, two different reference sets are used: the first includes
i-vectors only from HC and the second is formed with i-vectors from PD patients
only. The condition label is set Ci = 1 for all the i-vectors in the reference set.
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3 Data

In this work the i-vector extractor was trained using a speech corpus collected
for Speaker Verification. This corpus contains recordings from 103 young healthy
native Colombian Spanish speakers. The speakers were asked to read aloud ten
short utterances ten times each. The configuration with the lowest EER was
selected for this experiment: an UBM with 64 Gaussians and 100-dimensional
i-vectors. This i-vector configuration is used to extract i-vectors from the speech
signals of PD patiens and age balanced Healthy Controls (HC) described in
Section 4.

3.1 PC-GITA speech corpus

The PC-GITA speech corpus contains recordings of 50 PD patients (25 male and
25 female) and 50 healthy controls (HC), all of them native Colombian Spanish
speakers. The recordings were captured in a sound-proof booth using profes-
sional audio equipment. The original sampling frequency was 44.1 kHz, but the
recordings were down-sampled to 16 kHz for this study. During the recordings,
the participants were asked to perform different speech tasks including ten read
short sentences. All the patients were diagnosed by a neurologist expert and
their neurological state was assessed according to the MDS-UPDRS [3]. Addi-
tional information of this corpus can be found in [18].

3.2 m-FDA scale

The evaluation of the neurological state PD patients according to the MDS-
UPDRS-III scale is suitable to assess general motor impairments of PD patients;
however, the deterioration of the communication skills of the PD patients is
only evaluated in one of its 33 items. A modified version of the FDA scale (m-
FDA) based only on speech recordings was developed in [15, 6]. This modified
scale includes several aspects of speech: respiration, lips movement, palate/velum
movement, larynx, tongue, monotonicity, and intelligibility. The scale has a total
of 13 items and each of them ranges from 0 (normal or completely healthy)
to 4 (very impaired), thus the total score of the scale ranges from 0 to 52.
The labeling process of the recordings of the PC-GITA database was performed
by three phoniatricians who agreed in the first ten speakers. Afterwards, each
phoniatrician evaluated the remaining recordings independently. The inter-rater
reliability among the labelers is 0.75.

4 Experiments and results

The experimental methodology used in this work comprises the following steps:
1) The phonological features from the peech signals are extracted, 2) the phono-
logical features from training signals are used to train an i-vector extractor, and
3) i-vectors are extracted from the features of test signals and are processed.
This is summarized in figure 2.
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Fig. 2. General experimental methodology

4.1 Experimental setup and validation

For this study the data is randomly split for training and test as follows: 60% is
used to perform training and development and the remaining 40% is used to test.
Speaker independence is guaranteed between training and test sets. The opti-
mization the hyper-parameters of the classifiers (if needed) is done by performing
a 5-fold cross validation over the 60% training data. The best hyper-parameters
found in the this process are then used to perform the test. To validate the re-
sults, this process is repeated ten times. The train and test sets are randomly
chosen on each repetition of the experiment. The mean and standard deviation
over the ten iterations are reported.

As a baseline, the phonological features are modeled with four function-
als (mean, standard deviation, skewness, and kurtosis) computed from all the
phonological features of a given speaker to form a 60-dimensional feature vector.
A SVM classifier is trained on these features vectors [4].

4.2 Classification results

Table 2. PD vs. HC classification results

Method Accuracy [%] Sensitivity [%] Specificity [%] F1-score
Baseline 55.2 ± 3.1 49.0 ± 14.8 61.5 ± 14.3 0.51 ± 0.10

Threshold 77.5 ± 7.3 77.0 ± 12.1 78.0 ± 8.4 0.77 ± 0.08
i-vectors SVM 73.5 ± 8.2 64.0 ± 16.7 83.0 ± 8.7 0.70 ± 0.11

The results in Table 2 show that the threshold classification method has a
better accuracy and better sensitivity. That indicates that is more capable of
correctly classifying PD patients from HC. This would be more desirable in a
clinical setting, where further tests could be used to discard a false positive.

4.3 Estimation of neurological state and dysarthria level

As mentioned in Section 2, two different reference i-vector sets are considered
for this experiment. One comprises the i-vectors from the HC of the training
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set and the other the PD speakers in the training set. The assessment of the
neurological state and dysarthria level of a patient is evaluated by computing
the Spearman’s correlation coefficient between the MDS-UPDRS-III or m-FDA
label and the average cosine distance.

Table 3. Spearman’s correlation

Label HC Ref. PD Ref.
MDS-UPDRS-III 0.646 ± 0.101 −0.649 ± 0.099

m-FDA 0.581 ± 0.063 −0.574 ± 0.067

The results in table 3 show that the phonological i-vectors average cosine
distance is more correlated to the neurological state of the patient than to the
phonological evaluation. The negative correlation found when using the PD ref-
erence set is consistent with the hypothesis that a more affected speech has a
larger cosine distance to the reference i-vectors.

5 Conclusion

In this work we introduced the use of phonological i-vectors extracted from the
speech of PD patients and age balanced HC to perform the classification of PD
vs. HC and to estimate their neurological state and their dysarthria level. These
i-vectors are extracted from phonological posteriors obtained using pre-trained
DNNs.

The average cosine distance had better classification results than the SVM.
One of the main advantages of this approach is that it requires less parameters
to be optimized than other like those based on neural networks. Additionally, it
can be used to assess the neurological state and dysarthria.

Future work includes modeling subsets of the phonological features with i-
vectors to assess specific items in the m-FDA scale. This can help in obtaining
interpretable results such that are suitable to guide the phoniatrician or clinician
when defining the patient’s therapy. Also, we want to test the language indepen-
dence asssertion about the phonological features and perform similar analyses
in different languages.
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