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Introduction: Parkinson’s Disease (PD)

• Second neuro-degenerative disor-
der worldwide.

• 6.000.000 Parkinson’s patients
around the world.

• Neurologists evaluated PD accord-
ing to MDS-UPDRS-III scale (Goetz
et al. 2008).

Motor impairments
• Bradykinesia
• Rigidity
• Resting tremor
• Micrographia
• Dysartrhia
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Introduction: Parkinson’s Disease (PD)

Non-motor symptoms

• Sleep disturbances.
• Depression.
• Cognitive impairments.
• Communication disorders.
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Introduction: Parkinson’s Disease (PD)

Communication and Language
impairments

• Deficits in grammar
production.

• Less use of action verbs.
• Low information context.
• Simple syntax.
• Differences in sentence

length, number of
propositions, and
grammatical complexity.
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Introduction: Hypothesis and Aims

Hyphotesis:
We believe that using NLP methods can also capture the effect of language

impairments that affect the communication capabilities in PD, and also to detect
the presence of the disease.
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Introduction: Hypothesis and Aims

Hyphotesis:
We believe that using NLP methods can capture the effect of language

impairments that affect the communication capabilities of PD patients, and detect
the presence of the disease.

Aims:

• To model components related to communication deficits in PD using verbal
information.

• To analyze the suitability of NLP methods to discriminate PD vs. Healthy
Control (HC) subjects.
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Database

Table: General information of the subjects. Time since diagnosis, age and education are given in years.

PD patients HC subjects
Gender [F/M] 25/25 25/25
Age [F/M] 60.7(7.3)/61.3(11.7) 61.4(7.1)/60.5(11.6)
Education [F/M] 11.5(4.1)/10.9(4.5) 11.5(5.2)/10.6(4.4)
Time since diagnosis [F/M] 12.6(11.5)/8.7(5.8)
MDS–UPDRS–III [F/M] 37.6(14.0)/37.8(22.1)

• The task consisted on asking the participants to talk about their daily routines
• Average duration of the monologues: 48±29 seconds for the patients and

45±24 for the healthy subjects.
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Methods: Methodology
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Methods: Pre-processing

The data is cleaned and standardized, making it noise–free and ready for analysis.

Noise 
Removal

Lexicon
NormalizationTokenization
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Methods: Bag of Words-BoW

Collection of words into a feature vector.

1. The sentences are represented as
a collection of words.

2. Vocabulary→ 1182 words.

3. The words of the transcripts are
counted and stored as the feature
vector.
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Methods: Term Frequency-Inverse Document Frequency–TF-IDF

• TF: gives the relative frequency of a specific word.
• IDF: the frequency of occurrence of the word in the collection of documents.
• TF-IDF features aims to model the vocabulary of the patients, and the

relevance of the word they use in their transcripts.
• TF-IDF is given for the word Wi,j by:

Wi,j = TFi,j log

(
N

dfi

)

TFi,j : the number of occurrences of the term i in the document j .
dfi : the number of documents containing i .
N: the total number of documents.

J. C. Vásquez-Correa | TSD 2019, Ljubljana, Slovenia September 30, 2019 7



Methods: Word2Vec-W2V

• A Neural Network with one hidden layer.
• Input→ One-hot-Encoding representation of the words.
• Activations of the hidden layer are the “word vectors".
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Methods: Word2Vec-W2V

• The model was trained with a continuos bag of words (CBOW) architecture.
• Trained using the Spanish WikiCorpus, which contains 120 millions of words.
• The model considered a window size of 7 words to model the temporal

context.
• Dimension of the word vectors was set to 100.
• Statistical functionals were computed for the transcript of each user: average,

standard deviation, skewness, and kurtosis.
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Methods: Classification

• Two classifiers are considered: A soft margin Support Vector Machine (SVM)
with Gaussian kernel, and a Random Forest (RF).

• Validation: A ten-fold cross-validation scheme was implemented.
• An early fusion strategy was implemented to combine the different feature

sets.
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Results

A B

Word cloud representation: A) PD patient. B) HC subject.
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Results

Table: Classification results.

Features
RBF-SVM RF

Acc(%) Sens(%) Spe(%) AUC Acc(%) Sens(%) Spe(%) AUC
BoW 62.0 70.0 54.0 0.60 70.0 74.0 66.0 0.76
TF–IDF 58.0 58.0 56.0 0.60 67.0 68.0 66.0 0.71
W2V 72.0 92.0 52.0 0.66 67.0 74.0 60.0 0.71
Fusion 60.0 62.0 58.0 0.62 66.0 68.0 64.0 0.71

Notes: Acc: accuracy. Sens: sensitivity. Spe: specificity. AUC: Area under the ROC curve.

• PD patients are better discriminated in most of the cases.
• The fusion strategy did not improve the results indicating that the considered

features are not complementary.
• Further research is required to find an optimal strategy to merge such

information.
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Results
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ROC curves for the different feature sets.
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Results

Scores obtained for the BoW feature set.
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Conclusion

• Several NLP techniques were considered in this paper to discriminate between
HC subjects and PD patients.

• The proposed approach allows the study of different communication disorders
that cannot be observed in motor activities.

• PD patients do mainly passive activities like reading, thinking, and taking their
medication, while HC subjects do more active activities.

• The results suggest that there is information that reflects language impair-
ments in PD patients.
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Conclusion

• Limitation: the task performed by the participants might not reflect properly
the communication deficits of PD patients, but the difference between the daily
routine performed by the patients and the HC subjects.

• Our team is currently collecting more recordings with the aim to evaluate the
suitability of other tasks.

• Further experiments will explore more robust word embedding methods such
as ELMo or BERT to improve the performance of the system.

• Fusion of acoustic and language information will be implemented.
• Evaluation of specific non-motor impairments of PD patients will be addressed

in further experiments: depression, anxiety, among others.
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Thank you for your attention. Questions?

Camilo Vasquez
Pattern Recognition Lab, Department of Computer
Science,
Friedrich-Alexander University Erlangen-Nurenberg,
Erlangen, Germany
juan.vasquez@fau.de
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