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Background and objectives: Parkinson’s disease is a neurological disorder that affects the motor system 

producing lack of coordination, resting tremor, and rigidity. Impairments in handwriting are among the 

main symptoms of the disease. Handwriting analysis can help in supporting the diagnosis and in mon- 

itoring the progress of the disease. This paper aims to evaluate the importance of different groups of 

features to model handwriting deficits that appear due to Parkinson’s disease; and how those features 

are able to discriminate between Parkinson’s disease patients and healthy subjects. 

Methods: Features based on kinematic, geometrical and non-linear dynamics analyses were evaluated to 

classify Parkinson’s disease and healthy subjects. Classifiers based on K-nearest neighbors, support vector 

machines, and random forest were considered. 

Results: Accuracies of up to 93.1% were obtained in the classification of patients and healthy control sub- 

jects. A relevance analysis of the features indicated that those related to speed, acceleration, and pressure 

are the most discriminant. The automatic classification of patients in different stages of the disease shows 

κ indexes between 0.36 and 0.44. Accuracies of up to 83.3% were obtained in a different dataset used only 

for validation purposes. 

Conclusions: The results confirmed the negative impact of aging in the classification process when we 

considered different groups of healthy subjects. In addition, the results reported with the separate vali- 

dation set comprise a step towards the development of automated tools to support the diagnosis process 

in clinical practice. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Parkinson’s disease (PD) is a neuro-degenerative disorder, which

roduces motor and non-motor symptoms in the patients. Exam-

les of motor impairments include resting tremor, bradykinesia,

igidity, micrographia, hypomimia, and others [1] . While examples

f non–motor impairments include depression, sleep disorders, de-

entia, and others [2] . These symptoms appear as consequence of

he progressive loss of dopaminergic neurons in the mid-brain [1] .

andwriting is one of the most impaired motor activities in PD

atients. The most common symptoms in handwriting of PD pa-

ients include micrographia, which is related to the reduction of

he size in handwriting, and dysgraphia, which is related to diffi-

ulties performing the controlled fine motor movements required
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o write [3] . The progression of motor symptoms is currently eval-

ated with the third section of the Movement Disorder Society –

nified Parkinson’s Disease Rating Scale (MDS-UPDRS-III) [4] ,

hich is administered by neurologist experts. The scale contains

everal aspects to evaluate motor skills of the patients, includ-

ng those directly or indirectly related with handwriting like fin-

er tapping, hand tremor, hand rigidity, and others. The diagnosis

rocess of PD is expensive and time-consuming for patients, care-

ivers, and the health system [5–7] . Automatic handwriting analy-

is could help to support the process to diagnose and monitor the

eurological state of the patients. 

There is interest in the research community to automatically as-

ess the handwriting of PD patients. Most of the studies consider

ata from on-line handwriting, which are captured from digitizer

ablets, and contain information related to the dynamics of the

andwriting process while the patient is putting the pen on the

ablet (i.e., on-surface). Some of the features that are typically ex-

racted from the on-surface dynamics include the pressure of the

https://doi.org/10.1016/j.cmpb.2019.03.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2019.03.005&domain=pdf
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pen, and the azimuth and altitude angles. There are also tablets

that allow to capture information of the in-air movement (i.e., be-

fore and/or after the patient to put the pen on the tablet’s sur-

face). The classical way of addressing the analysis of on-line hand-

writing is based on-surface features. For instance in [8] the au-

thors proposed features related to the power spectral density of

the speed stroke in the handwriting of 17 healthy control (HC)

subjects and 13 PD patients. The authors classified PD patients vs.

HC subjects using a neural network and reported an accuracy of

up to 86.2%. In [9] the authors extracted kinematic features from

the handwriting of 20 HC subjects and 20 PD patients who wrote

their addresses and full names. The authors computed features re-

lated to the average time on the tablet’s surface, the average in-

air time of the pen, the speed of the trajectory, and the average

pressure of the pen. The authors reported accuracies of up to 97%

in the classification of PD patients vs. HC subjects. In [10] the au-

thors evaluated the in-air movement during the handwriting pro-

cess of 37 PD patients and 38 HC subjects who wrote the Czech

sentence: Tramvaj dnes uz nepo-jede (the train will not go today).

The authors extracted several kinematic features including the av-

erage in-air time of the pen, and the average on-surface time. The

authors performed the classification of PD patients and HC sub-

jects using a support vector machine (SVM) with a Gaussian ker-

nel, and reported accuracies around 86% when the features based

on pressure, kinematic, in-air time, and on-surface time are com-

bined. In [11] the authors analyzed different handwriting tasks per-

formed by the same set of patients considered in [10] . The set

of tasks included the Archimedean spiral, the repetition of the

graphemes l and le , simple orthographic isolated words, and the

Czech sentence: Tramvaj dnes uz nepo-jede . The authors extracted

kinematic and pressure-based features to classify PD patients and

HC subjects. Three different classification methods were consid-

ered: SVM, K-nearest neighbors (KNN), and Adaboost. Accuracies of

up to 76.5% were reported with the combination of kinematic and

pressure-based features. In [12] the authors applied the General-

ized Canonical Correlation Analysis (GCCA) to classify PD patients

and HC subjects, and to predict the neurological state of the pa-

tients using information from handwriting, speech, and gait. Hand-

writing analyses were based on kinematic features extracted from

the vertical and horizontal axes, and the pressure of the pen. The

authors concluded that the combination of speech, handwriting,

and gait using the GCCA approach improves the accuracy in the

classification and the prediction of the neurological state. 

Other neurological disorders have also been studied using on-

line handwriting. In [13] the authors proposed non-linear dynam-

ics (NLD) features to evaluate the handwriting of 10 HC subjects

and 25 patients with essential tremor. Several NLD features such

as the fractal dimension and Shannon entropy were extracted from

the Archimedean spiral. The NLD features were combined with

standard kinematic measures related to the speed and pressure of

the pen. The authors reported accuracies of up to 85% classifying

the patients vs. HC subjects. 

Recent deep learning approaches have also been used to classify

handwriting of PD and HC subjects. In [14] the authors modeled

the handwriting dynamics of 18 HC and 74 PD subjects using a

smart-pen with several sensors. The participants performed several

tasks including the drawing of circles and Archimedian spirals. The

authors proposed a model based on convolutional neural networks

(CNNs). The signals from the smart-pen were transformed into im-

ages by concatenating and reshaping the time-series. Several CNN

configurations were considered for each task, and a majority vot-

ing scheme was implemented to make the final decision. Accura-

cies up to 95% were reported by the authors. In [15] the authors

considered a model called deep echo state network to classify 67

PD patients and 15 HC subjects who drew Archimedian spirals on

a tablet. The deep learning model was based on recurrent neural
etworks (RNNs), which process the time-series of horizontal and

ertical movements, the grip angle, and the pressure of the pen.

he authors reported accuracies of up to 88.3% with the proposed

odel. Recently, in [16] researchers from our research Lab consid-

red a deep learning model based on CNNs to classify PD patients

nd HC subjects using multimodal information from speech, hand-

riting, and gait. The handwriting analysis was based on the tran-

ition when the patients have the pen in the air and put it on the

abletâs surface. The trajectories from the pen and the pressure of

he pen were modeled with a CNN. The authors reported accura-

ies of up to 97.6% when information from speech, handwriting,

nd gait is combined; however, the accuracy obtained considering

nly the handwriting analysis was around 66.5%. 

According to the reviewed literature, most of the studies con-

idered kinematic features to evaluate handwriting impairments of

atients with neurodegenerative disorders. There are some recent

tudies that consider deep learning methods to assess the hand-

riting deficits of PD patients. Other kinds of features including

eometrical, spectral, and NLD based have not been extensively

tudied to support the diagnosis and monitoring of the patients.

he analysis of these aspects will be the main outcomes of the cur-

ent study. 

.1. Research objectives of this study 

This paper evaluates the performance of three different feature

ets (kinematic, geometrical, and NLD) to model handwriting im-

airments of PD patients. The method aims to provide suitable

nsights about the relevance of different f eatures to discriminate

etween PD patients and HC subjects. The proposed approach is

valuated in realistic conditions, i.e., with a different sets of pa-

ients and healthy subjects that never participated in the training

rocess. Finally, the study aims to evaluate the suitability of the

roposed approach to automatically classify patients in different

tages of the disease. 

. Data acquisition and participants 

The data were collected with a Wacom Cintiq 13 HD tablet,

ith visual feedback to the patients and using a sampling fre-

uency of 180 Hz. The tablet captures six different signals: hori-

ontal position ( x ( t )), vertical position ( y ( t )), azimuth angle, alti-

ude angle, distance to the tablet surface ( z ( t )), and pressure of the

en. For this study the participants draw an Archimedean spiral

ollowing a predefined template ( Fig. 1 ), which was displayed on

he tablet. Participants were requested to draw the spiral between

he lines of the template and avoiding to cross them. Additionally,

he participants wrote the sentence “El abecedario es a, b, c,..., z”

hich in English is: “The alphabet is a, b, c..., z”. 

With the aim to show real cases of how people with different

ge and health condition draw, Figs. 2 and 3 include examples of

rawings obtained from three different participants: 23 years old

ubject (left), 65 years old subject (middle), and 73 years old PD

atient with a MDS-UPDRS-III score of 64 (right). 

.1. Subjects 

Four groups of participants are considered in this study: pa-

ients with PD; elderly HC subjects; young HC subjects; and an

dditional set of 12 participants, which is considered to validate

he generalization capability of the models. Details of each group

re provided below. 

PD patients: This group is formed with 39 patients (26 female)

ith ages between 29 and 81 years (mean = 59.08; SD = 11.17).

ll of them were evaluated by a neurologist expert according to

he MDS-UPDRS-III scale [4] . The scores of such evaluations ranged
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Fig. 1. Template of the Archimedean spiral. 
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etween 8 and 106 (mean = 35.72; SD = 23.25). This group of pa-

ients was recruited in the Foundation for Parkinson’s patients in

edellín, Colombia. The patients were evaluated during the “ON”

hase of medication, i.e., no more than three hours after the in-

ake. 

Elderly HC subjects (eHC): This group includes 39 healthy sub-

ects (18 female) with ages between 29 and 85 years (mean =
1.85; SD = 13.89). None of the participants in this group had

ymptoms of neurological or movement disorders. The PD and eHC

roups are matched for age ( t(0 . 99) = −1 . 19 , p = 0 . 12 ). 

Young HC subjects (yHC): A total of 40 healthy participants (16

emale) are included in this group. The age ranges from 20 to 42

ears (mean = 24.43; SD = 4.08). Most of the participants of this

et are students who wanted to participate in the study. None of

hem exhibited or manifested symptoms of neurological or move-

ent disorders. 

Table 1 includes demographic and clinical data of the subjects

ncluded in the aforementioned three groups. Fig. 4 shows the age

istribution of the three groups of subjects. 
Low pressure

23 years old HC 65 years ol

Fig. 2. Archimedean spiral draw

Low pressure

23 years old HC 65 years ol

Fig. 3. Sentence written by a yHC (left), an eHC (middle), and a P
Additional validation set: This group of subjects was considered

o validate the generalization capability of the model proposed in

his paper. The group includes 6 PD patients and 6 HC subjects,

here are 3 female in each group, and the ages range from 54 to

3 (mean = 68.33; SD = 10.19) and from 45 to 57 (mean = 53; SD

 4.69), respectively. Demographic and clinical data, including the

DS-UPDRS-III score of each patient in this additional validation

et, are included in Table 2 . 

. Methods 

The methodology addressed in this work consists of three main

tages: feature extraction, dimensionality reduction, and automatic

lassification. This methodology is summarized in Fig. 5 . Details of

ach stage are presented in the following subsections. 

.1. Feature extraction 

Three different feature sets are extracted from the signals: fea-

ures based on kinematic analysis, novel features based on the geo-

etrical and spectral analyses of the Archimedean spiral, and NLD

eatures. 

.1.1. Kinematic features 

A total of eight features are extracted: (1) absolute/real

rajectory of the Archimedean spiral r ( t ), computed as r(t) =
 

x 2 (t) + y 2 (t) , where x ( t ) and y ( t ) are the horizontal and vertical

ositions, respectively; (2) speed of the trajectory; (3) acceleration

f the trajectory; (4) pressure of the pen; (5) first derivative of the

ressure; (6) second derivative of the pressure; (7) distance from

he tablet’s surface to the pen ( z ( t )); and (8) first derivative of z ( t ).

ix functionals are computed for each feature: mean, standard de-

iation, maximum value, minimum value, skewness, and kurtosis,

orming a 48-dimensional feature vector per drawing. 

.1.2. Geometrical and spectral features 

A novel feature set with geometrical and spectral measures of

he Archimedean spiral is introduced. To create the feature set the

piral’s trajectory is modeled as the amplitude-modulated signal
 

 (t) defined in Eq. (1) . 

 

 (t) = 

(
a 3 t 

3 + a 2 t 
2 + a 1 t + a 0 

)
· sin (2 π f t ) (1)

The real trajectory r ( t ) is modeled as a sinusoidal signal with

ncreasing amplitude and frequency f . The amplitude values are
High pressure

d HC 64 years old PD patient 

n by three participants. 

High pressure

d HC 64 years old PD patient 

D patient (right). The sentence is: El abecedario es a b c ... z . 
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Table 1 

Demographic and clinical information of the participants. PD : Parkinson’s disease, eHC : elderly healthy controls, yHC : young healthy 

controls, μ: average, σ : standard deviation. 

PD patients eHC yHC 

Male Female Male Female Male Female 

Number of subjects 13 26 21 18 24 16 

Age ( μ±σ ) 62.8 ± 10.2 57.7 ± 11.4 67.4 ± 12.8 60.5 ± 8.0 25.3 ± 4.5 23.1 ± 3.0 

Age range 41 – 81 25 – 71 49 – 84 50 – 74 21 – 42 20 – 32 

Time post diagnose (years) ( μ±σ ) 8.4 ± 4.5 13.4 ± 12.7 

MDS-UPDRS-III ( μ±σ ) 34.6 ± 22.1 36.3 ± 24.2 

Range of MDS-UPDRS-III 8 – 82 9 – 106 

Table 2 

Demographic and clinical information of the participants in the additional 

validation dataset. PD : Parkinson’s disease, HC : healthy controls, t : time 

post diagnose [years], UPDRS-III : MDS-UPDRS-III. 

HC PD 

Gender Age Gender Age t UPDRS-III 

HC 1 M 57 PD 1 F 65 8 24 

HC 2 F 45 PD 2 F 69 5 26 

HC 3 F 50 PD 3 M 63 6 36 

HC 4 F 57 PD 4 M 76 14 69 

HC 5 M 54 PD 5 M 54 5 43 

HC 6 M 55 PD 6 F 83 6 34 

PD
eHC
yHC

PD
eHC
yHC

20 30 40 50 60 70 80
Age (years)

Fig. 4. Age distribution of the three groups of subjects. 

 

 

 

 

t  

u  

i  

t  

F  

p  

t  

e  

b  

t  

p  

s  

c  

t  

t

3

 

t  

i  

B  

g  

T  

t  

P  

i  

A  

a  

m  

c  

s  

d  

w  

i  

t  

u  

a

s  

F  

i  

l  

O  

m  

a

given by a third-order polynomial which coefficients ( a i ) are esti-

mated using a polynomial regression with the maximum peaks of

the original trajectory. A third-order polynomial is chosen because

it avoids an oscillatory behavior across the samples. Additionally,
Feature 
extraction

Kinema
Geomet

Non-lin

Fig. 5. General m
he third order guarantees a smooth first derivative and a contin-

ous second derivative across the trajectory [17] . The frequency f

s obtained as the fundamental frequency of the trajectory using

he Fourier transform. The model of the trajectory is depicted in

ig. 6 where the real and the modeled trajectories can be com-

ared. Note that the trajectory for the PD patient is more irregular

han those observed for the two HC subjects. Twelve features are

xtracted from the modeled trajectory: mean square error (MSE)

etween the real and modeled trajectories, the coefficients of the

hird order polynomial used for the model ( a i , i ∈ {0, 1, 2, 3}), am-

litude of the first five spectral components of the trajectory, the

lope of the line that links the peaks of the first and third spectral

omponents of the trajectory, and the slope of the line that links

he amplitudes of the third and fifth spectral components of the

rajectory. 

.1.3. Non-linear dynamics features 

This study considers an exploratory analysis of NLD features

o model the handwriting dynamics of PD patients. This approach

s motivated by the evidence reported in previous studies [13,18] .

ased on these reports, we believe that when the disease pro-

resses, the handwriting becomes more distorted and chaotic.

hus, NLD features should be able to reveal specific characteris-

ics in handwriting such that allow us to discriminate between

D patients and healthy controls. The NLD features considered

n this study are extracted from the trajectory signal r ( t ) of the

rchimedean spiral and from the sentence. To understand the NLD

nalysis, the concept of phase space should be introduced. It is a

ultidimensional representation that allows computing topologi-

al features of a chaotic system. For a time series s ( n ), the phase

pace can be reconstructed using the embedding theorem intro-

uced in [19] . The phase space is defined according to Eq. (2) ,

here ˆ s (n ) is the reconstructed attractor, n is the number of points

n the time series, and m and τ are the embedding dimension and

ime delay, respectively. The embedding dimension is estimated

sing the false neighbors method [20] , and the time delay is found

s the first minimum of the mutual information function. 

ˆ 
 (n ) = { s (n ) , s (n − τ ) , · · · , s (n − (m + 1) τ ) } (2)

ig. 7 shows attractors corresponding to trajectories of the spirals

ntroduced in Fig. 6 . Note that the PD patient exhibits more irregu-

ar trajectories in its corresponding attractor than the HC subjects.

nce the attractor is created, several features can be computed to

easure its complexity. In this study a total of seven NLD features

re extracted from the reconstructed attractors. 
tics
rical

ear

DecisionClassification:
SVM,KNN,RF

ethodology. 
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Fig. 6. Comparison of the real trajectory of the Archimedean spiral r ( t ) and the model ̂  r (t) for a yHC (left), an eHC (middle) and a PD patient (right). 

r(n)

r(n
-τ)r(n-2τ)

23 years old HC

r(n)

65 years old HC

r(n
-τ)r(n-2τ)

r(n)

64 years old PD patient 

r(n
-τ)r(n-2τ)

Fig. 7. Attractors of the trajectory of the Archimedean spiral for a yHC (left), an eHC (middle) and a PD patient (right). 
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Approximate entropy (ApEn): The ApEn is a regularity statis-

ic to measure the average conditional information generated by

iverging points on trajectories in the attractor. A time series

ontaining several repetitive patterns has a relatively small ApEn,

hile a more complex process has a higher ApEn. Details of the

rocess to compute the ApEn are described in [21] . 

Sample entropy (SampEn): The main drawback of ApEn is its de-

endence on the signal’s length due to self comparison of attrac-

or’s points. The SampEn is a modification of the ApEn which ap-

ears to overcome this drawback. Further details of the process to

ompute ApEn can be found in [22] . 

Approximate and Sample entropies with Gaussian kernels: The

omputation of ApEn and SampEn estimates the regularity of the

ttractor’s trajectories by counting neighbor points. This process is

erformed using a Heaviside step function. Instead of using such a

tep function, the computation of ApEn and SampEn with Gaussian

ernels uses the exponential function presented in Eq. (3) , where

 is a tolerance parameter of the distance between near samples

n the time-series s [ n ]. Further details of the computation process

an be found in [23] . 

 G (s [ i ] , s [ j]) = exp 

(
−| | s [ i ] − s [ j] | | 2 

10 R 

2 

)
(3)

orrelation Dimension (CD): This feature allows to estimate the ex-

ct space occupied by the attractor in the phase space. To estimate

D the correlation sum C ( ε) is defined according to Eq. (4) , where

is the Heaviside step function. C ( ε) can be interpreted as the

robability to have pairs of points in a trajectory of the attractor

nside the same sphere of radius ε. In [24] , the authors demon-

trated that C ( ε) represents a volume measure, hence CD can be

efined by Eq. (5) . 

(ε) = lim 

n →∞ 

1 

n (n − 1) 

n ∑ 

i =1 

n ∑ 

j= i +1 

�(ε − | s [ i ] − s [ j] | ) (4) 

D = lim 

ε→ 0 

log (C(ε)) 

log (ε) 
(5) 

Hurst exponent (HE): This feature measures the long term de-

endence of a time series. It is defined according to the asymptotic
ehavior of the re-scaled range of a time series as a function of a

ime interval [25] . The estimation process consists of dividing the

ime series into intervals of size L and calculating the average ra-

io between the range R and the standard deviation σ of the time

eries. HE is computed as the slope of the curve obtained from

q. (6) . 

 

HE = 

R 

σ
(6) 

Largest Lyapunov exponent (LLE): This feature represents the av-

rage divergence rate of neighbor trajectories in the phase space.

ts estimation process follows the algorithm in [26] . After the re-

onstruction of the phase space, the nearest neighbor of every

oint in the trajectory is estimated. The LLE is estimated as the

verage separation rate of those neighbors in the phase space. 

Lempel-Ziv complexity (LZC): This feature measures the degree

f disorder of spatio-temporal patterns in a time series [27] . In

he computation process the signal is transformed into binary se-

uences according to the difference between consecutive samples,

nd the LZC reflects the rate of new patterns in the sequence. It

anges from 0 (deterministic sequence) to 1 (random sequence).

urther details of the computation process can be found in

28,29] . 

.2. Classification 

Three different classifiers are used in this study: (1) K-nearest

eighbors, (2) SVM with a Gaussian kernel, and (3) random forest

RF). The three aforementioned classifiers were trained and tested

ollowing a leave one out cross-validation strategy. This procedure

s repeated for each sample to assure that all data are tested. The

arameters of the classifiers are optimized in a grid-search. For

he KNN the possible number of neighbors was K ∈ {3, 5, 7}. For

he SVM the parameters C and γ were optimized up to powers

f ten where C ∈ {0.0 0 01, 0.0 01, ���, 10 0 0} and γ ∈ {0.0 0 01, 0.0 01,

��, 10 0 0}. Finally, for the RF the number of trees and their maxi-

um depth were N ∈ {5, 10, 15, 20, 50} and D ∈ {1, 2, 5, 10}, respec-

ively. The performance of the classifiers was evaluated consider-

ng several statistics including the F-score, accuracy, sensitivity, and

pecificity. 
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Table 3 

Classification of PD patients vs. yHC subjects using SVM, KNN, and RF classifiers. Kinem: kinematic features, Geom: Geometrical features, NLD: NLD features, Acc: Accuracy, 

Spec. Specificity, Sens. Sensitivity, F1: F1 score. 

Task Feature set SVM KNN RF 

C γ Acc (%) Spec Sens F1 K Acc (%) Spec Sens F1 N D Acc (%) Spec Sens F1 

Spiral Kinem. 10 0.01 94.0 0.94 0.94 0.94 3 86.0 0.89 0.86 0.86 20 5 92.4 0.92 0.92 0.92 

Spiral Geom. 1 0.1 78.5 0.79 0.78 0.78 5 72.2 0.73 0.72 0.72 5 2 77.2 0.78 0.77 0.77 

Spiral Kinem. + Geom. 10 0.01 93.7 0.94 0.94 0.94 5 86.1 0.88 0.86 0.86 5 1 83.5 0.84 0.84 0.84 

Spiral NLD 1 0.1 77.2 0.77 0.77 0.77 5 69.6 0.71 0.70 0.69 5 1 67.1 0.67 0.67 0.67 

Spiral Kinem. + Geom. + NLD 10 0.01 91.1 0.91 0.91 0.91 5 87.3 0.90 0.87 0.87 15 1 88.6 0.89 0.89 0.89 

Spiral PCA Kinem. + Geom. + NLD 1 0.01 93.7 0.94 0.94 0.94 5 88.6 0.90 0.89 0.89 10 5 91.6 0.92 0.92 0.92 

Sentence Kinem. 1 0.01 92.0 0.92 0.92 0.92 3 86.7 0.88 0.87 0.86 50 5 90.7 0.91 0.91 0.91 

Sentence NLD 10 0.1 81.3 0.81 0.81 0.81 5 77.3 0.78 0.77 0.77 20 1 74.7 0.75 0.75 0.74 

Sentence Kinem. + NLD 10 0.001 93.3 0.93 0.93 0.93 3 85.3 0.86 0.85 0.85 50 5 89.3 0.89 0.89 0.89 
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4. Experiments and results 

A total of five experiments are performed in this study. Four of

them comprise bi-class classification experiments: PD vs. yHC; PD

vs. eHC; relevance analysis; and classification of PD vs. HC consid-

ering the separate validation sets described in Table 2 . The fifth

experiment is a multi-class classification task where the goal is to

differentiate among four different stages of the disease. Details of

all these experiments are described in the next subjections. 

4.1. Classification of PD vs. yHC 

Table 3 shows the results when PD patients vs. yHC subjects

are classified using the aforementioned classifiers using different

feature We performed a Kruskal-Wallis test to assess whether a

significant difference existed between the features computed from

the PD patients and yHC subjects. The null hypothesis of both fea-

ture sets coming from the same distribution was rejected in all

cases ( p � 0.05). The results obtained after the relevance analy-

sis with PCA (see Section 4.3 ) are also included in this table. The

best results are obtained with the features computed from the

Archimedean spiral ( F 1 = 0 . 94 ). Note that in general the SVM and

the RF classifiers provide the highest accuracies. Note also that

there is a low variation of the optimal hyper-parameters along the

feature sets and tasks, which gives an idea about the stability and

robustness of the proposed approach. 

4.2. Classification of PD vs. eHC 

The Kruskal–Wallis test to assess the significant difference be-

tween the features computed from the PD patients and eHC sub-

jects reflect that both feature sets do not come from the same dis-

tribution ( p � 0.05). The results of the classification between PD

patients and eHC subjects are shown in Table 4 . This table also in-

cludes the results obtained after the relevance analysis with PCA

(see Section 4.3 ). Note that the results are slightly lower than
Table 4 

Classification of PD patients vs. eHC subjects using SVM, KNN, and RF classifiers. Kinem: 

Spec. Specificity, Sens. Sensitivity, F1: F1 score. 

Task Feature set SVM 

C γ Acc (%) Spec Sens F1 

Spiral Kinem. 100 0.001 87.0 0.87 0.87 0.8

Spiral Geom. 100 0.0 0 01 30.7 0.74 0.69 0.7

Spiral Kinem. + Geom. 10 0.001 86.7 0.89 0.87 0.8

Spiral NLD 0.0 0 01 0.0 0 01 52.0 0.73 0.52 0.6

Spiral Kinem. + Geom. + NLD 100 0.0 0 01 86.7 0.89 0.87 0.8

Spiral PCA Kinem. + Geom. + NLD 10 0.001 89.3 0.89 0.89 0.8

Sentence Kinem. 1 0.01 70.4 0.70 0.70 0.7

Sentence NLD 100 0.01 62.0 0.62 0.62 0.6

Sentence Kinem. + NLD 0.001 0.001 53.5 0.75 0.53 0.6
hose obtained in the discrimination of PD patients vs. yHC sub-

ects. Although such a negative impact, high accuracies were also

btained when classifying PD patients vs. elderly HC subjects (F1

core of up to 0.87). The best results are obtained with the kine-

atic and kinematic + Geometrical feature sets. Similar to the pre-

ious case, the best classifiers in this experiment were the SVM

nd the RF. Note also that the dispersion of the hyper-parameters

n this case is much larger than in the previous experiment, which

ives count of the complexity of the classification problem. Note

hat the values of γ are, smaller than those in the previous

xperiment, indicating that the models are constrained and the

et of support vectors should include a large number of training

amples. 

Fig. 8 shows the Receiver Operating Characteristic (ROC) curves

btained from the previously described classification experiments.

hese curves allow the comparison among results obtained in the

lassification of PD patients and the two groups of HC subjects.

nly results from kinematic and geometrical features extracted

rom the Archimedean spiral are included. It can be observed that

he three classifiers provide similar results in both experiments.

he results when classifying PD vs. eHC confirm the negative im-

act of aging in the classification process. Histograms and the

orresponding fitted probability density distribution are shown in

ig. 9 . The figure illustrates the distribution of the SVM scores, i.e.,

he distance of data samples to the separating hyperplane. The sta-

istical significance of the results was assessed with a Welch t -

est to evaluate the difference in the scores obtained for PD pa-

ients and HC subjects. The null hypothesis was rejected for PD

s. yHC ( t = −9 . 043 , p � 0.005), and for PD vs. eHC ( t = −12 . 817 ,

 � 0.005). 

.3. Relevance analysis 

Apart from the typical classification between groups of sub-

ects, we want to perform a relevance analysis such that allows

he identification of the most relevant/discriminant features. This
kinematic features, Geom: Geometrical features, NLD: NLD features, Acc: Accuracy, 

KNN RF 

K Acc (%) Spec Sens F1 N D Acc (%) Spec Sens F1 

7 3 86.7 0.87 0.86 0.86 10 1 85.3 0.85 0.85 0.85 

2 3 53.3 0.53 0.53 0.53 5 1 57.3 0.58 0.58 0.59 

7 5 81.3 0.84 0.81 0.81 15 1 84.0 0.84 0.84 0.84 

4 7 58.7 0.59 0.59 0.59 5 1 56.0 0.58 0.56 0.58 

7 5 80.0 0.81 0.80 0.80 10 1 84.0 0.84 0.84 0.84 

9 3 81.3 0.81 0.81 0.81 50 5 81.0 0.81 0.81 0.81 

0 7 73.2 0.73 0.73 0.73 15 10 78.9 0.79 0.79 0.79 

2 5 63.4 0.63 0.63 0.63 50 1 60.6 0.61 0.61 0.61 

8 7 78.9 0.80 0.79 0.79 20 5 73.2 0.73 0.73 0.73 
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Fig. 8. ROC curves for the classification of PD patients vs. young HC subjects (left) and for PD patients vs. elderly HC subjects (right). 
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Fig. 9. Histograms and the corresponding probability density distributions of the scores obtained from PD patients and yHC subjects (left), and for PD patients and eHC 

subjects (right). 
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Table 5 

Top 10 of selected features from the Archimedian spiral. � and 

�� indicate the first and second derivative, respectively. 

PD vs. yHC PD vs. eHC 

Min. ��pressure a 1 of ̂  r (t) 

Average speed Skewness of acceleration 

Average pressure Kurtosis of acceleration 

Kurtosis of speed MSE between r ( t ) and ̂  r (t) 

Min. speed Average acceleration 

Skewness of r ( t ) Std. of �z ( t ) 

Skewness of ��pressure 2nd spectral component of r ( t ) 

Max. speed Max. acceleration 

Min. �z ( t ) Min. acceleration 

Std. of �z ( t ) LZC 
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nalysis help in finding features that could be potentially used in

linical practice not only to make informed decisions but to pro-

ide additional information to the clinician about the health state

f a patient. In this paper the process is based on the Principal

omponent Analysis (PCA) algorithm. The original feature matrix

 ∈ R 

m ×p is reduced to a matrix X r ∈ R 

m ×q , (q < p) according to

 relevance vector ρ = [ ρ1 , ρ2 , · · · , ρq , · · · , ρp ] computed as ρ =
 p 
j=1 

∣∣λ j v j 
∣∣, where λj and v j are the eigenvalues and the eigen-

ectors of the original feature matrix [30] . The values of ρ for each

eature are related with the contribution of the feature to each

rincipal component. The original features with higher ρ are the

ost correlated with the principal components and are included

o form the reduced feature space. This approach has been suc-

essfully used in previous studies and its main advantage over

ther existing feature selection methods is its low computational

ost [31,32] . In this work the relevance analysis is performed upon

he feature space formed with kinematic, geometrical and NLD fea-

ures extracted from the Archimedian spiral. 90% of the total vari-

nce is kept in the reduced feature space which is formed with a

otal of 18 features for the case of PD vs. yHC, 19 features for PC

s. eHC, and 16 features for yHC vs. eHC. Table 5 indicates the top

0 of the selected features on each case. 

The results indicate that the best features to classify PD patients

nd yHC subjects are those based on the kinematic analysis. When

onsidering the case of PD patients vs. eHC, some of the geomet-

ical and spectral features appear in the top ten of the selected

eatures. Particularly, the first coefficient of the third-order poly-

omial ( a 1 ) used to model the amplitude of the trajectory ̂  r (t) ap-

ears in the first place of the top ten. Finally, note that the features

elected in the case of eHC vs. yHC are mostly different compared

o those selected in the previous cases. 

The selected features were used to perform two classification

xperiments: PD vs. yHC and PD vs. eHC. Results are indicated in
 e
ables 3 and 4 , respectively. The aim is to evaluate the contribution

f each selected feature in these classification tasks. Each feature

as sequentially added according to the order given by the rele-

ance factor ρ . The classification step is performed using a SVM.

he results are shown in Fig. 10 A for PD vs. yHC, and in Fig. 10 B

or PD vs. eHC. The bars indicate the relevance factor of each

eature and the black lines indicate the obtained incremental

ccuracy. Note that when classifying PD vs. yHC about 90% of ac-

uracy is obtained already with the first two relevant features, in-

icating that the problem is relatively simple and it can be solved

ith a low dimensional (less complex) feature space. Conversely,

hen classifying PD vs. eHC at least the first 16 features are re-

uired to reach accuracies of around 90%. This fact confirms the

ncreased complexity of that problem due to the impact of aging

n the handwriting process. We performed additional experiments

not reported here) using only those features that provide an in-

remental improvement in the accuracy, however, the results were

ot satisfactory, indicating that all of the selected features are rel-

vant for the classification process. 
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Fig. 10. Classification of PD vs. yHC subjects (left) and PD vs. eHC subjects (right) when the selected features are sequentially added. 

Table 6 

Classification of PD patients vs. HC subjects using the separate validation set. Kinem: kinematic features, Geom: Geometrical features, NLD: NLD features, Acc: Accuracy, 

Spec. Specificity, Sens. Sensitivity, F1: F1 score. 

Task Feature set SVM KNN RF 

C γ Acc (%) Spec Sens F1 K Acc (%) Spec Sens F1 N D Acc (%) Spec Sens F1 

Spiral Kinem. 100 0.001 50.0 0.50 0.50 0.50 3 83.3 0.83 0.83 0.83 10 1 66.6 0.69 0.66 0.66 

Spiral Geom. 100 0.0 0 01 58.3 0.23 0.41 0.29 3 58.3 0.59 0.58 0.58 5 1 58.3 0.61 0.58 0.55 

Spiral Kinem. + Geom. 10 0.001 66.6 0.69 0.67 0.66 5 81.3 0.84 0.81 0.81 15 1 83.3 0.93 0.92 0.92 

Spiral NLD 0.0 0 01 0.0 0 01 50.0 0.75 0.50 0.66 7 58.4 0.59 0.58 0.59 5 1 64.3 0.65 0.65 0.65 

Spiral Kinem. + Geom. + NLD 100 0.0 0 01 58.3 0.58 0.58 0.58 5 83.3 0.83 0.83 0.83 10 1 72.0 0.71 0.71 0.71 

Spiral PCA Kinem. + Geom. + NLD 10 0.001 66.6 0.66 0.66 0.66 3 66.6 0.66 0.66 0.66 50 5 50.0 0.50 0.50 0.52 

Sentence Kinem. 1 0.01 75.0 0.76 0.75 0.75 7 58.3 0.61 0,42 0.72 15 10 58.4 0.50 0.50 0.50 

Sentence NLD 100 0.01 58.3 0.59 0.59 0.59 5 59.0 0.59 0.59 0.61 50 1 51.2 0.51 0.51 0.51 

Sentence Kinem. + NLD 0.001 0.001 50.0 0.75 0.50 0.66 7 50.0 0.50 0.50 0.67 20 5 51.3 0.51 0.51 0.51 

Table 7 

Confusion matrices with results of classifying HC subjects and PD patients in different stages of the disease. PD1: patients with MDS-UPDRS-III scores 

between 0 and 20. PD2: patients with MDS-UPDRS-III scores between 21 and 40. PD3: patients with MDS-UPDRS-III scores above 40. Spiral PCA 

indicates the results obtained with the set of 19 features that results after the feature selection process when classifying PD vs. eHC (see Fig. 10 ). The 

results are expressed in (%). F1: F1 score. κ: Cohen-kappa index. 

Spiral Kinem. Spiral Kinem. + Geom. Spiral Kinem + Geom + NLD Spiral PCA 

Acc = 61.3, F1 = 0.58, κ = 0.40 Acc = 64.0, F1 = 0.62, κ = 0.44 Acc = 64.0, F1 = 0.62, κ = 0.44 Acc = 57.3, F1 = 0.55, κ = 0.36 

HC PD1 PD2 PD3 HC PD1 PD2 PD3 HC PD1 PD2 PD3 HC PD1 PD2 PD3 

HC 97.2 0.0 2.8 0.0 97.2 0.0 2.8 0.0 97.2 0.0 2.8 0.0 91.7 2.8 5.5 0.0 

PD1 15.4 30.8 15.4 38.5 15.4 38.5 7.7 38.5 15.4 38.5 15.4 30.8 15.4 38.5 15.4 30.8 

PD2 21.4 28.6 35.7 14.3 21.4 14.3 28.6 35.7 21.4 21.4 28.6 28.6 28.6 28.6 28.6 14.3 

PD3 33.3 33.3 16.7 16.7 33.3 16.7 16.7 33.3 33.3 16.7 16.7 33.3 0.0 50.0 41.7 8.3 
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4.4. Classification using a separate validation set 

This experiment is performed with the aim of evaluating the

proposed approach in a more realistic scenario. Given that this set

of additional subjects was recorded in sessions different than those

of the other groups, it is possible to say that this additional vali-

dation set represents a group of subjects who arrived in the clin-

ics and performed a handwriting test to decide whether to con-

tinue with further screenings to validate their neurological condi-

tion. The results are shown in Table 6 . Note that the parameters of

the classifiers are the same as those used in Table 4 , which means

that no further optimization was performed over the system, i.e.,

the patients in the separated validation set never participated in

the configuration/optimization of the classifiers. The accuracy ob-

tained with the KNN and RF classifiers are above 83% in several

cases with different feature sets extracted from the Arquimedian

spiral. These results are comparable to those obtained in the PD

vs. eHC experiments, which confirms the generalization capability

of the proposed approach when using the KNN and RF classifiers.
he results with the SVM are not as high as with the other classi-

ers perhaps because the optimization of the two meta-parameters

eeds a fine tuning which was not performed in our experi-

ents to avoid biased results due to over-fitting. Further experi-

ents will be performed in the near future with data from more

ubjects in order to improve the stability and robustness of this

lassifier. 

.5. Classification of PD patients in different stages of the disease 

Four-class classification experiments were performed consider-

ng four groups: (1) HC subjects; (2) PD patients with MDS-UPDRS-

II scores below 20 (initial stage–PD1); (3) PD patients with MDS-

PDRS-III scores between 20 and 40 (intermediate stage–PD2);

nd (4) PD patients with MDS-UPDRS-III scores above 40 (advance

tage–PD3). Classification was performed with a multi-class SVM

ollowing a one vs. all strategy. Confusion matrices with the results

re reported in Table 7 . Results are presented in terms of accuracy

Acc), F1 score (F1), and the Cohen-Kappa index ( κ). 
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In this case only drawings of the Archimedean spiral were con-

idered and only the feature sets that exhibited the best results in

he experiments with the separate validation set were extracted:

inematic; kinematic + geometrical; and kinematic + geometrical

 NLD (see Table 6 ). Additionally, we explored the suitability of

he feature set selected with PCA which was previously used to

lassify between HC and eHC subjects ( Section 4.3 ). The results in-

icate that HC subjects can be accurately classified, while the pa-

ients in advance stage (PD3) are the most difficult to be discrimi-

ated. The results with kinematic + geometrical features are sim-

lar to those obtained with kinematic + geometrical + NLD fea-

ures, which likely indicates that the nonlinear features are not

omplimentary to the kinematic and geometrical ones, at least to

iscriminate different stages of PD. The confusion matrix also indi-

ates that dimensionality reduction does not have positive impact

n the results, conversely increases the false positive rate making

he system to confuse HC subjects with patients in initial (PD1) or

ntermediate (PD2) stages of the disease. 

. Discussion 

Kinematic features seem to be the most suitable to perform

he automatic discrimination between PD patients and HC subjects

young or elderly). The combination of the three feature sets in the

ame space also exhibited good classification results. Besides the

inary classification, a relevance analysis was performed. Accord-

ng to the results, the most discriminative features are geometrical

nd kinematic. Most of the selected features as relevant are related

o speed, pressure, and acceleration of the strokes, which is related

o the deficits exhibited by patients when performing motor ac-

ivities like handwriting. Patients in different stages of the disease

ere also classified and κ indexes between 0.36 and 0.44 were ob-

ained. The results indicate that, at least in the experiments per-

ormed here, the nonlinear features do not contribute to improve

he classification of different stages of the disease. An additional

xperiment with a separate validation set with PD and HC sub-

ects was performed. This validation set was built during record-

ng sessions different than those performed to collect the signals

onsidered in the other experiments. Thus this additional experi-

ent allows the evaluation of the proposed approach in real condi-

ions. The results show that it is possible to discriminate between

D and HC subjects (in the separate validation set) with accura-

ies of up to 83.3%. To the best of our knowledge, this is the first

ork that considers experiments with separate and independent

alidation samples. Further research should be performed by com-

ining the proposed model with novel approaches based on deep

earning methods [14,16] . In addition, longitudinal studies should

e performed to understand and track the progress of the disease

n the PD patients through time. 

. Conclusion 

This paper explored and evaluated the suitability of three differ-

nt feature sets (kinematic, geometrical and NLD) to model hand-

riting impairments exhibited by PD patients. We provide an ac-

urate method to classify between Parkinson’s patients and healthy

ubjects. The model was validated in a different dataset, and high

ccuracies were obtained (83.3%). The classification of Parkinson’s

atients in several stages of the disease is promising. We are aware

f the fact that more research and a larger sample of patients is

ecessary to lead to more conclusive results; however, we think

hat the results presented here are a step forward to the develop-

ent of non-intrusive methods, useful in clinical practice, to diag-

ose and monitor Parkinson’s patients. 

Future studies will include the comparison of the proposed

pproach with recent studies based on deep learning strategies,
hich have shown to be also accurate to model the handwriting

eficits of PD patients. 
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