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PC-GITA database was considered [1]. It contains recordings of 50 
PD patients and 50 healthy control (HC) speakers. All participants 
are Colombian Spanish native speakers. The data are age and 
gender balanced.   

Tasks: Each subject performed six diadochokinesis (DDK) tasks: 
(/pa/, /ta/, /ka/, /pa-ka-ta/, /pa-ta-ka/, /pe-ta-ka/). Three 
repetititions of sustained vowel /a/ are also considered.

Database

Three traditional classifiers were used to validate the selected 
features, Support Vector Machine (SVM), Random Forest (RF), and 
Naïve Bayes (NB). A 10-fold Cross-validation was  performed.

Results

• Boruta Wrapper works better than using only the KLD filter. 
Improvements around 2-3% are observed in the classification 
accuracy.

• The sequence of bilabial, alveolar, and velar stops has more 
discriminating power than other DDK sequences.

• The features related to voice onset time and stability are more 
relevant for the addressed problem.

• Future work will include other feature types and different feature 
selection strategies.

Conclusions

Feature Selection

Feature Extraction

Type Task Features Statistics Total

Phonation /a/ 3 times 7 x4 84

Articulation DDK 6 tasks 53x2 x4 2544

DDK Rhythm DDK 6 tasks 55 n/a 330

EMD DDK 6 tasks 24 x4 576

Table 1: Features extracted for each type.

Item Rel. Feat. Task

1 dF0 Std /a/-2

2 dF0 Std /a/-3

3 ddF0 Std /a/-2

4 ddF0 Std /a/-3

5 PPQ Mean /a/-1

6 PPQ Std /a/-2

7 PPQ Std /a/-3

8 P-U ratio /pa-ta-ka/
Table 2: Relevant features (Left table) and tentative features (Right table).

KLD selected features

Classifier Acc. F1-score

SVM 69 ± 11 70 ± 14

RF 73 ± 17 74 ± 15

NB 64 ± 14 67 ± 15
Table 3: Classification results with KLD and Boruta selected features.

Tent. Feat. Task

ddF0 Std /a/-1

Df0 Kurt /a/-2

PPQ Std /a/-1

Jitter Std /a/-1

Jitter Std /a/-2

Jitter Std /a/-3

Min V /pa-ta-ka/

Parkinson's disease (PD) dysarthria manifests through changes in 
control of a person's speech production, and affects several 
speech production subsystems:
• Respiratory: breathing, reduced volume and range.
• Articulation: less control on consonant production.
• Prosody (Rhythm): rate variation/instability, longer pauses, takes 

longer time to start voicing, slower speech.
• Phonation: monotony of pitch, hoarse.

Introduction

Figure 3: Visualizing the dataset after KLD feature filtering using Principal Component Analysis.

 

Stage 2 – Boruta Wrapper:

Boruta wrapper is used to remove redundant and less relevant features. 
Boruta algorithm is built-around Random Forest classifier for relevancy 
determination. For each iteration, the algorithm performs:
• Step 1: Adding shadow features by adding 5 or more features with 

their values shuffled.
• Step 2: Calculate Z score and find the maximum Z score of the 

shadow attributes (MZSA).
• Step 3: Features with Z score higher than MZSA are deemed 

important.

A total of 3534 features from four feature sets were extracted.
Articulation features

Figure 1: Onset and offset segments.

Figure 2: 
Separating 
consonant-vo
wel transition 
and plain 
vowel 
segments.

Boruta confirmed features

Acc. F1-score

72 ± 16 71 ± 18

73 ± 16 74 ± 14

67 ± 13 70 ± 15
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