

# **Feature Representation of Pathophysiology of Parkinsonian** Dysarthria

A. Rueda<sup>1</sup>, J. C. Vásquez-Correa<sup>2,3</sup>, C. D. Rios-Urrego<sup>2</sup>, J. R. Orozco-Arroyave<sup>2,3</sup>, S. Krishnan<sup>1</sup>, Elmar Nöth<sup>3</sup>

<sup>1</sup>Department of Electrical and Computer Engineering, Ryerson University, Toronto, Canada

<sup>2</sup>GITA research Lab, Faculty of Engineering, University of Antioquia, UdeA, Medellín, Colombia

<sup>3</sup>Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany

## Introduction

Parkinson's disease (PD) dysarthria manifests through changes in control of a person's speech production, and affects several speech production subsystems:

- Respiratory: breathing, reduced volume and range.
- Articulation: less control on consonant production.
- Prosody (Rhythm): rate variation/instability, longer pauses, takes

PC-GITA database was considered [1]. It contains recordings of 50 PD patients and 50 healthy control (HC) speakers. All participants are Colombian Spanish native speakers. The data are age and gender balanced.

Database

INTERSP

2019

**Tasks:** Each subject performed six diadochokinesis (DDK) tasks:

#### longer time to start voicing, slower speech.

Phonation: monotony of pitch, hoarse.

/ta/, /ka/, /pa-ka-ta/, /pa-ta-ka/, /pe-ta-ka/). Three (/pa/, repetititions of sustained vowel /a/ are also considered.

## **Feature Extraction**





A total of 3534 features from four feature sets were extracted.

| Туре         | Task        | Features | <b>Statistics</b> | Total |
|--------------|-------------|----------|-------------------|-------|
| Phonation    | /a/ 3 times | 7        | x4                | 84    |
| Articulation | DDK 6 tasks | 53x2     | x4                | 2544  |
| DDK Rhythm   | DDK 6 tasks | 55       | n/a               | 330   |
| EMD          | DDK 6 tasks | 24       | x4                | 576   |

Table 1: Features extracted for each type.

## **Feature Selection**

**Stage 1 – KLD Filter:** 

- Kullback-Leibler Divergence (KLD) is also known as relative entropy.
- Measures the differences between two probability distribution ۲ functions.



Taken PD entropy in relative to HC.

$$KLD(P_{PD}||P_{HC}) = \sum_{x \in X} P_{PD}(X) \log \frac{P_{PD}}{P_{HC}}$$

| Item | Rel. Feat. | Task       | Tent. Feat. | Task       |
|------|------------|------------|-------------|------------|
| 1    | dF0 Std    | /a/-2      | ddF0 Std    | /a/-1      |
| 2    | dF0 Std    | /a/-3      | Df0 Kurt    | /a/-2      |
| 3    | ddF0 Std   | /a/-2      | PPQ Std     | /a/-1      |
| 4    | ddF0 Std   | /a/-3      | Jitter Std  | /a/-1      |
| 5    | PPQ Mean   | /a/-1      | Jitter Std  | /a/-2      |
| 6    | PPQ Std    | /a/-2      | Jitter Std  | /a/-3      |
| 7    | PPQ Std    | /a/-3      | Min V       | /pa-ta-ka/ |
| 8    | P-U ratio  | /pa-ta-ka/ |             |            |

**Table 2:** Relevant features (Left table) and tentative features (Right table).

#### Results

Figure 3: Visualizing the dataset after KLD feature filtering using Principal Component Analysis.

#### **Stage 2 – Boruta Wrapper:**

Boruta wrapper is used to remove redundant and less relevant features. Boruta algorithm is built-around Random Forest classifier for relevancy determination. For each iteration, the algorithm performs:

- Step 1: Adding shadow features by adding 5 or more features with their values shuffled.
- Step 2: Calculate Z score and find the maximum Z score of the shadow attributes (MZSA).
- Step 3: Features with Z score higher than MZSA are deemed important.

## Conclusions

Three traditional classifiers were used to validate the selected features, Support Vector Machine (SVM), Random Forest (RF), and Naïve Bayes (NB). A 10-fold Cross-validation was performed.

- Boruta Wrapper works better than using only the KLD filter. Improvements around 2-3% are observed in the classification accuracy.
- The sequence of bilabial, alveolar, and velar stops has more discriminating power than other DDK sequences.

|            | <b>KLD</b> selected features |          | Boruta confirmed features |          |
|------------|------------------------------|----------|---------------------------|----------|
| Classifier | Acc.                         | F1-score | Acc.                      | F1-score |
| SVM        | 69 ± 11                      | 70 ± 14  | 72 ± 16                   | 71 ± 18  |
| RF         | 73 ± 17                      | 74 ± 15  | 73 ± 16                   | 74 ± 14  |
| NB         | 64 ± 14                      | 67 ± 15  | 67 ± 13                   | 70 ± 15  |

Table 3: Classification results with KLD and Boruta selected features.

- The features related to voice onset time and stability are more relevant for the addressed problem.
- Future work will include other feature types and different feature selection strategies.



**Camilo Vasquez** 

Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany

juan.vasquez@fau.de +49 9131 85 27137

🧊 @jcvasquezc1





This project has received funding from the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No 766287. This project was also funded by CODI at UdeA grant # PRG2017-15530.