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Introduction: Emotion recognition

Recognition of emotion in
speech:

Call centers

Emergency services

>

>

» Psychologic therapy
> Intelligent vehicles
>

Public surveillance
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Introduction: Fear-type emotions

Fear-type
emotions
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Introduction: Challenges

» Naturalness of databases (Acted, Natural, Evoked)
> Large set of features

» Acoustic conditions (Telephone, Background noise)
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Introduction: Previous Work (2-class)

» Emotion recognition under ANVGN noise

» Emotion recognition under GSM and wired-line telephone

channel
Condition Original Affected KLT logMMSE
AWGN SNR=3dB | 76.9% 71.3%  78.1% 74.7%
AWGN SNR=10dB | 76.9% 74.7%  80.1% 76.7%
GSM channel 76.9% 77.8%  62,9% 70.6%
wired-line 76.9% 65.2%  59.0% 75.1%

Table: Emotion recognition Berlin database



Methodology
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Methodology: Characterization

Wavelet decomposition Voiced segments
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Databases

database # recordings Speakers Fs (Hz) Naturalness Emotions
Hot anger
Boredorm
Disgust
Berlin 534 12 16000 Acted Anxiety/Fear
Happiness
Sadness
Neutral

Hot anger
Happiness
Disgust
Anxiety/Fear
Sadness
Surprise

Enterface05 (Audio-Video) | 1317 44 44100 Evoked
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Experiments

Experiment Berlin DB enterface05 DB

Anger Anger
Multi-class Disgust Disgust

Fear Fear
Neutral
(Anger, disgust, fear) (Anger, disgust, fear, sadness)
2-class Vs VS
Neutral (Happiness, Surprise)

Table: Experiments performed



Methodology: Classification
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Results: Original signals

Segments feat. Class. task Berlin DB enterface05 DB
. multi-class  80.0 £ 11.6 57.7+6.8
Voiced 1200 o ass 899478 65.1+4.6
. multi-class  62.5 +5.0 55.4+6.8
Unvoiced 1200 lass 825486 64.6+ 6.0
Fusion multi-class  74.7 £ 11.9 61.6 4.5
us! 2-class 94.6 £5.1 69.2 £ 1.5
all signal 384 multi-class  84.3 £ 6.6 66.6 + 4.2
openEAR [Eyben2012] 2-class 949+4.1 68.6 + 4.8

Table: Accuracy for original non-affected speech signals
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Results: Original signals
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Results: Original signals

Segments feat. Class. task Berlin DB enterface05 DB
. multi-class  80.0 + 11.6 57.7+6.8
Voiced 1200 ) ass  89.0+7.8 65.1+4.6
. multi-class  62.5+5.0 55.4+6.8
Unvoiced 120y class 825486 64.6 + 6.0
Fusion multi-class  74.7 +11.9 61.6 +4.5
2-class 946 +5.1 69.2+ 1.5
all signal 384 multi-class  84.3 +6.6 66.6 +- 4.2
openEAR [Eyben2012] 2-class 949+4.1 68.6 + 4.8

Table: Accuracy for original non-affected speech signals.
Previous Work: 76.9%
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Results: Original signals

Segments feat. Class. task Berlin DB enterface05 DB
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Results: Original signals

Segments feat. Class. task Berlin DB enterface05 DB
. multi-class  80.0 £ 11.6 57.7+6.8
Voiced 120 o lass 809478 65.1 4+ 4.6
. multi-class  62.5 +5.0 55.4+6.8
Unvoiced 1200 lass 825486 64.6+ 6.0
Fusion multi-class  74.7 £ 11.9 61.6 4.5
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all signal 384 multi-class  84.3 £ 6.6 66.6 + 4.2
openEAR [Eyben2012] 2-class 949+4.1 68.6 + 4.8

Table: Accuracy for original non-affected speech signals
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Experiments: Environments

>

Original non-affected speech signals
Cafeteria babble noise

v

Street noise

v

v

KLT algorithm
LogMMSE algorithm

SNR evaluated ranges from -3dB to 6dB

v
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Accuracy (%)
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Databases

database # recordings Speakers Fs (Hz) Naturalness
Berlin 534 12 16000 Acted
Enterface05 (Audio-Video) | 1317 44 44100 Evoked

Segments Classif task enterface05 logMMSE Difference
NEAR multi-class 66.9 +4.2 +0.3
ope 2-class 68.8 +3.1 +0.2
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Results: Affected signals, 2class (WPT)

Berlin database
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Conclusion |

1. A different scheme for feature extraction based on WPT is pre-
sented, it highlights the low frequency zone from the speech
signal. Its performance it is acceptable for the 2-class problem
when compared with a well established scheme as OpenEAR.

2. The use of WPT in low frequency bands must be evaluated
more deeply in order to improve performance for Multi-class
problem.

3. Other features calculated from the wavelet decompositions must
be considered, specially for unvoiced segments.
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Conclusion 1l

4. New methodology seems to be more robust against non-controlled
conditions. Although logMMSE algorithm outperforms KLT,
performance for Speech Enhancement is not good enough. The
affectation produced by the cafeteria babble noise is more crit-
ical than the produced by the street noise.

5. Evaluation of non-additive environmental noise must be ad-
dressed in the future.
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Questions

Thanks!
Q7

jesus.vargas@udea.edu.co
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