### Non-linear Dynamics Characterization from Wavelet Packet Transform for Automatic Recognition of Emotional Speech

J.C. Vásquez-Correa<sup>1</sup>, J.R Orozco-Arroyave<sup>1,2</sup>, J.D Arias-Londoño<sup>1</sup>, J.F Vargas-Bonilla<sup>1</sup>, Elmar Nöth<sup>2</sup>



<sup>1</sup> Faculty of Engineering, Universidad de Antioquia UdeA <sup>2</sup> Pattern Recognition Lab, Friedrich Alexander Universität, Erlangen-Nürnberg

Nonlinear Speech Processing, NOLISP 2015

#### 1. Introduction

- 2. Methodology
- 3. Databases
- 4. Results
- 5. Conclusion





### **1. Introduction**

Recognition of emotion in speech:

- ✓ Call centers
- ✓ Emergency services
- ✓ Psychologic therapy
- ✓ Intelligent vehicles







### **1. Introduction**

 The interest has been focused on detection of fear-type emotions which appear in situations where the human integrity is at risk.







### **1. Introduction**

Low frequency

High frecuency

Lv0 Lv1 Lv2 Lv3

Wavelet Packet Transform (WPT)

 WPT provides a time-frequency multi-resolution analysis. NLD measures are estimated in each decomposed band.



- 1. Introduction
- 2. Methodology
- 3. Databases
- 4. Results
- 5. Conclusion











#### Segmentation

Two types of sound:

- ✓ Voiced
- ✓ Unvoiced

Both kind of segments are processed independently







### Wavelet Packet Transform

Features are estimated on each band:

- ✓ Log-Energy
- ✓ Teager Energy Operator (TEO)
- ✓ Entropies (Shannon, log-Energy)
- ✓ NLD (CD, LLE, HE, LZC)

Low frequency

High frecuency



Wavelet Packet Transform (WPT)















Two different GMM were created for classification task, which are based on:

- 1. Voiced segments
- 2. Unvoiced segments

Then are combined in a second classification stage according to



 $P(Score\ fusion) = \alpha^* P(GMM\ Voiced) + (1 - \alpha)^* P(GMM\ Unvoiced)$ 



- 1. Introduction
- 2. Methodology
- 3. Databases
- 4. Results
- 5. Conclusion





### 3. Databases

| Database    | Num<br>recordings | Num<br>speakers | Sample<br>frequency | Emotions recognized                     |
|-------------|-------------------|-----------------|---------------------|-----------------------------------------|
| GVEESS      | 224               | 12              | 44100               | Anger<br>Disgust<br>Fear<br>Desperation |
| Berlin      | 534               | 10              | 16000               | Anger<br>Disgust<br>Fear                |
| eNTERFACE05 | 1317              | 44              | 44100               | Anger<br>Disgust<br>Fear                |



UNIVERSIDAD DE ANTIOQUIA

- 1. Introduction
- 2. Methodology
- 3. Databases
- 4. Results
- 5. Conclusion





### **3. Results**

#### **Voiced Segments**

| Features | GVEESS<br>Accuracy | Berlin<br>Accuracy | eNTERFACE<br>Accuracy |
|----------|--------------------|--------------------|-----------------------|
| DC       | 57.1±14.6          | 62.7±13.9          | 47.6±3.8              |
| LLE      | 68.0±16.2          | 67.6±8.1           | 52.1±4.9              |
| HE       | 68.1±28.0          | 67.6±8.1           | 52.0±4.9              |
| LZC      | 82.0±11.3          | 78.3±9.9           | 54.0±7.3              |
| Comb     | 65.0±21.2          | 79.0±10.0          | 51.1±8.0              |





### **3. Results**

#### **Unvoiced Segments**

| Features      | GVEESS<br>Accuracy | Berlin<br>Accuracy | eNTERFACE<br>Accuracy |
|---------------|--------------------|--------------------|-----------------------|
| LogEnergy     | 93.4±9.8           | 64.7±11.1          | 46.9±4.4              |
| LogEnergy TEO | 93.1±8.8           | 60.8±8.1           | 54.2±4.9              |
| SE            | 93.4±9.8           | 71.0±12.7          | 53.7±5.8              |
| LEE           | 92.3±10.3          | 77.2±10.9          | 57.0±4.1              |
| Comb.         | 99.0±2.5           | 69.1±16.0          | 63.1±15.7             |





### **3. Results**

### Combination of probabilities LZC Voiced and Comb. Unvoiced

#### enterface05 database Berlin database GVEESS database Accuracy 55.6 +/- 4.5 Accuracy 76.8 +/- 11.1 Accuracy: 99.1 +/- 2.5 alpha=0.6 alpha=0.9 alpha=0.4 70 Fear 100 100 99,1 99.0 100.0 99.5 Disgust 64.3 90.8 Anger 90 60.8 60 90 Desperation 80 54.0 73.9 80 50 70 70 63.0 60 foeunooy 50 40 50 31.9 30 24 40 40 21.3 20,6 30 30 20 17.9 24, 15. 14.1 20 20 17.4 <u>13</u>.0 10 10 10 8.7 0.00.9 Ô Fear Disgust Anger Desperation $\cap$ Fear Disgust Anger Fear Berlin Anger Emotion UNIVERSIDAD Emotion Emotion **DE ANTIOOUIA**

NOLISP-2015

1 8 0 3

*jcamilo.vasquez@udea.edu.co* 

- 1. Introduction
- 2. Methodology
- 3. Databases
- 4. Results
- 5. Conclusion





# 4. Conclusion

jcamilo.vasquez@udea.edu.co

- 1. A new set of features based on NLD measures calculated from WPT are extracted from speech signals to perform the automatic recognition of fear-type emotions. The voiced and unvoiced segments of each recording are characterized separately.
- 2. The results indicate that LZC evaluated from wavelet decomposition in voiced segments provides a good representation of emotional speech.



3. Features derived from energy and entropy calculated from unvoiced segments are suitable to characterize emotional speech.



## 4. Conclusion

- 4. The evaluation of proposed features could be used as complement of classical features for emotion recognition from speech.
- 5. The proposed features must be evaluated in speech recordings in non-controlled noise conditions, and the wavelet transform in superior levels of decomposition must be addressed in future work in order to consider more resolution in frequency domain.















