Wavelet-Based Time-Frequency Representations for Automatic Recognition of Emotions from Speech

J. C. Vásquez-Correa^{1,2*}, **T. Arias-Vergara**¹, J. R. Orozco-Arroyave^{1,2}, J. F. Vargas-Bonilla¹, E. Nöth²

¹Department of Electronics and Telecommunication Engineering, University of Antioquia UdeA. ²Pattern recognition Lab. Friedrich Alexander Universität. Erlangen-Nürnberg.

*jcamilo.vasquez@udea.edu.co

・ロン ・日 ・ ・ ヨン・

1/34

Introduction

Methodology

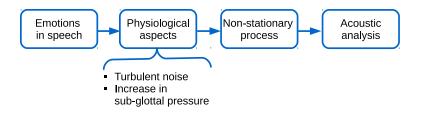
Data

Experiments and Results

Conclusion

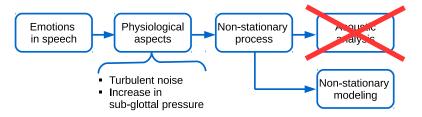
<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 2/34

Introduction: Emotion recognition


Recognition of emotion from speech:

- Call centers
- Emergency services
- Depression Treatment
- Intelligent vehicles
- Public surveillance

Introduction: Non-stationary analysis



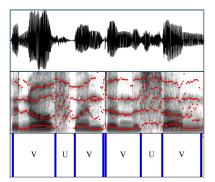
Introduction: Non-stationary analysis

6/34

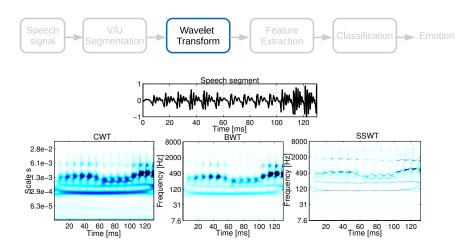
Time–Frequency Analysis
 Wavelet Transform
 Wigner–Ville distribution
 Modulation Spectra

Features based on the energy content of three Wavelet–based TF representations for the classification of emotions from speech.

- Continuous Wavelet transform
- Bionic Wavelet transform
- Synchro–squeezing Wavelet transform



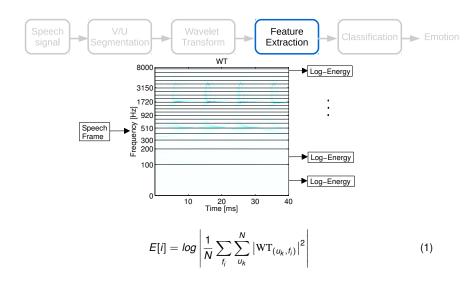
4 ロ ト 4 回 ト 4 三 ト 4 三 ト 三 の 9 ()
8/34



Two types of sounds:

- Voiced
- Unvoiced

<ロト < 団ト < 巨ト < 巨ト < 巨 > 巨 のへで 9/34

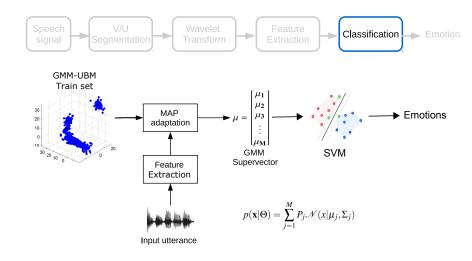

UNIVERSIDAD DE ANTIOQUIA

CWT: continuous wavelet transform BWT: bionic wavelet transform SSWT: synchro-squeezed wavelet transform

Methodology: feature extraction

UNIVERSIDAD DE ANTIOOUIA

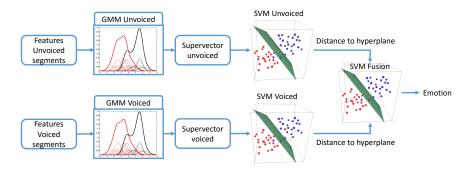
(ロ)
 (日)
 (日)



Descriptors (16 $ imes$ 2)	statistic functions (12)
ZCR	mean
RMS Energy	standard deviation
F ₀	kurtosis, skewness
HNR	max, min, relative position, range
MFCC 1-12	slope, offset, MSE linear regression
Δs	

Table: Features implemented using openEAR¹

¹Florian Eyben, Martin Wöllmer, and Björn Schuller. "OpenSmile: the munich versatile and fast open-source audio feature extractor". In: *18th ACM international conference on Multimedia*. ACM. 2010, pp. 1459–1462.



Methodology: classification

- The scores of the SVM are fused and used as new features for a second SVM.
- Leave one speaker out cross validation is performed.
- UAR as performance measure.

Data

Table: Databases used in this study

Database	# Rec.	# Speak.	Fs (Hz)	Туре	Emotions
Berlin	534	10	16000	Acted	Fear, Disgust Happiness, Neutral Boredom, Sadness Anger
IEMOCAP	10039	10	16000	Acted	Fear, Disgust Happiness, Anger Surprise, Excitation Frustration, Sadness Neutral
SAVEE	480	4	44100	Acted	Anger, Happiness Disgust, Fear, Neutral Sadness, Surprise
enterface05	1317	44	44100	Evoked	Fear, Disgust Happiness, Anger Surprise, Sadness

Experiments and Results: high vs. low arousal

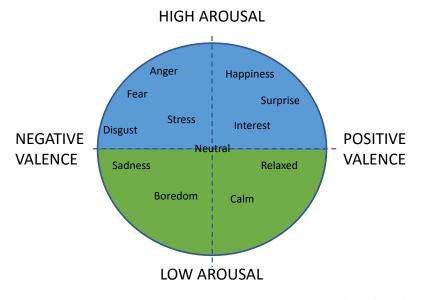


Table: Detection of high vs. low arousal emotions. V: voiced, U: unvoiced.

Features	Segm.	Berlin	SAVEE	enterface05	IEMOCAP
	V	96 ± 6	$\textbf{83}\pm\textbf{9}$	81 ± 2	74 ± 4
CWT	U	89 ± 9	80 ± 8	80 ± 1	75 ± 3
	Fusion	93 ± 8	87 ± 7	81 ± 3	76 ± 3
	V	96 ± 6	82 ± 8	82 ± 2	74 ± 4
BWT	U	90 ± 9	80 ± 7	80 ± 2	75 ± 3
	Fusion	94 ± 7	85 ± 7	82 ± 2	76 ± 4
	V	96 ± 6	84 ± 8	81 ± 2	76 ± 5
SSWT	U	89 ± 8	80 ± 7	80 ± 1	76 ± 3
	Fusion	95 ± 6	82 ± 6	80 ± 3	77 ± 4
OpenEAR	-	97 ± 3	$\textbf{83}\pm\textbf{9}$	81 ± 2	76 ± 4

17/34

Table: Detection of high vs. low arousal emotions. V: voiced, U: unvoiced.

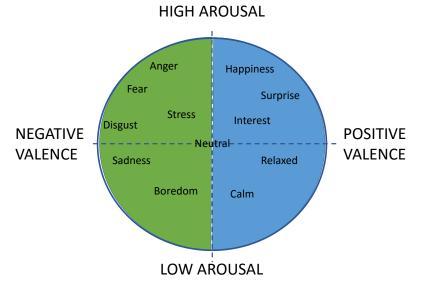

Features	Segm.	Berlin	SAVEE	enterface05	IEMOCAP
	V	96 ± 6	83 ± 9	81 ± 2	74 ± 4
CWT	U	89 ± 9	80 ± 8	80 ± 1	75 ± 3
	Fusion	93 ± 8	87 ± 7	81 ± 3	76 ± 3
	V	96 ± 6	82 ± 8	82 ± 2	74 ± 4
BWT	U	90 ± 9	80 ± 7	80 ± 2	75 ± 3
	Fusion	94 ± 7	85 ± 7	82 ± 2	76 ± 4
SSWT	V	96 ± 6	84 ± 8	81 ± 2	76 ± 5
	U	89 ± 8	80 ± 7	80 ± 1	76 ± 3
	Fusion	95 ± 6	$\textbf{82}\pm\textbf{6}$	80 ± 3	77 ± 4
OpenEAR	-	97 ± 3	$\textbf{83}\pm\textbf{9}$	81 ± 2	76 ± 4

Table: Detection of high vs. low arousal emotions. V: voiced, U: unvoiced.

Features	Segm.	Berlin	SAVEE	enterface05	IEMOCAP
	V	96 ± 6	$\textbf{83}\pm\textbf{9}$	81 ± 2	74 ± 4
CWT	U	89 ± 9	80 ± 8	80 ± 1	75 ± 3
	Fusion	93 ± 8	87 ± 7	81 ± 3	76 ± 3
	V	96 ± 6	82 ± 8	82 ± 2	74 ± 4
BWT	U	90 ± 9	80 ± 7	80 ± 2	75 ± 3
	Fusion	94 ± 7	85 ± 7	82 ± 2	76 ± 4
	V	96 ± 6	84 ± 8	81 ± 2	76 ± 5
SSWT	U	89 ± 8	80 ± 7	80 ± 1	76 ± 3
	Fusion	95 ± 6	$\textbf{82}\pm\textbf{6}$	80 ± 3	77 ± 4
OpenEAR	-	97 ± 3	$\textbf{83}\pm\textbf{9}$	81 ± 2	76 ± 4

19/34

Experiments and Results: positive vs. negative

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q ()
20/34

Table: Detection of positive vs. negative valence emotions. V: voiced, U: unvoiced.

Features	Segm.	Berlin	SAVEE	enterface05	IEMOCAP
	V	80 ± 4	64 ± 5	75 ± 2	55 ± 4
CWT	U	76 ± 5	64 ± 3	73 ± 3	58 ± 2
	Fusion	78 ± 4	67 ± 4	74 ± 2	58 ± 5
	V	80 ± 4	64 ± 6	74 ± 2	55 ± 4
BWT	U	76 ± 7	64 ± 5	74 ± 3	58 ± 2
	Fusion	78 ± 6	65 ± 6	74 ± 4	58 ± 3
	V	82 ± 5	64 ± 5	76 ± 3	56 ± 4
SSWT	U	77 ± 6	63 ± 3	74 ± 3	58 ± 2
	Fusion	79 ± 4	65 ± 5	74 ± 4	60 ± 3
OpenEAR	-	87 ± 2	72 ± 6	81 ± 4	59 ± 3

Table: Detection of positive vs. negative valence emotions. V: voiced, U: unvoiced.

Features	Segm.	Berlin	SAVEE	enterface05	IEMOCAP
	V	80 ± 4	64 ± 5	75 ± 2	55 ± 4
CWT	U	76 ± 5	64 ± 3	73 ± 3	58 ± 2
	Fusion	78 ± 4	67 ± 4	74 ± 2	58 ± 5
BWT	V	80 ± 4	64 ± 6	74 ± 2	55 ± 4
	U	76 ± 7	64 ± 5	74 ± 3	58 ± 2
	Fusion	78 ± 6	65 ± 6	74 ± 4	58 ± 3
	V	82 ± 5	64 ± 5	76 ± 3	56 ± 4
SSWT	U	77 ± 6	63 ± 3	74 ± 3	58 ± 2
	Fusion	79 ± 4	65 ± 5	74 ± 4	60 ± 3
OpenEAR	-	87 ± 2	72 ± 6	81 ± 4	59 ± 3

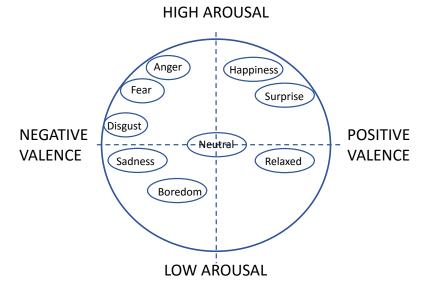

22/34

Table: Detection of positive vs. negative valence emotions. V: voiced, U: unvoiced.

Features	Segm.	Berlin	SAVEE	enterface05	IEMOCAP
	V	80 ± 4	64 ± 5	75 ± 2	55 ± 4
CWT	U	76 ± 5	64 ± 3	73 ± 3	58 ± 2
	Fusion	78 ± 4	67 ± 4	74 ± 2	58 ± 5
	V	80 ± 4	64 ± 6	74 ± 2	55 ± 4
BWT	U	76 ± 7	64 ± 5	74 ± 3	58 ± 2
	Fusion	78 ± 6	65 ± 6	74 ± 4	58 ± 3
	V	82 ± 5	64 ± 5	76 ± 3	56 ± 4
SSWT	U	77 ± 6	63 ± 3	74 ± 3	58 ± 2
	Fusion	79 ± 4	65 ± 5	74 ± 4	60 ± 3
OpenEAR	-	87 ± 2	72 ± 6	81 ± 4	59 ± 3

Experiments and Results: multiple emotions

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q ()
24/34

Table: Classification of multiple emotions. V: voiced, U: unvoiced.

Features	Segm.	Berlin	SAVEE	enterface-05	IEMOCAP
	V	61 ± 8	41 ± 13	48 ± 5	47 ± 6
CWT	U	55 ± 7	39 ± 6	$\textbf{46} \pm \textbf{4}$	51 ± 4
	Fusion	67 ± 7	44 ± 9	51 ± 6	56 ± 5
	V	64 ± 9	41 ± 15	48 ± 4	47 ± 5
BWT	U U	56 ± 7	40 ± 4	45 ± 4	51 ± 4
	Fusion	66 ± 7	47 ± 10	50 ± 4	55 ± 6
SSWT	V	64 ± 8	43 ± 11	$\textbf{48} \pm \textbf{4}$	49 ± 5
	U	55 ± 8	40 ± 6	$\textbf{46} \pm \textbf{4}$	52 ± 3
	Fusion	69 ± 8	45 ± 12	49 ± 6	58 ± 4
OpenEAR	-	80 ± 8	49 ± 17	63 ± 7	57 ± 3

Table: Classification of multiple emotions. V: voiced, U: unvoiced.

Features	Segm.	Berlin	SAVEE	enterface-05	IEMOCAP
	V	61 ± 8	41 ± 13	48 ± 5	47 ± 6
CWT	U	55 ± 7	39 ± 6	$\textbf{46} \pm \textbf{4}$	51 ± 4
	Fusion	67 ± 7	44 ± 9	51 ± 6	56 ± 5
BWT	V	64 ± 9	41 ± 15	$\textbf{48} \pm \textbf{4}$	47 ± 5
	U	56 ± 7	40 ± 4	45 ± 4	51 ± 4
	Fusion	66 ± 7	47 ± 10	50 ± 4	55 ± 6
SSWT	V	64 ± 8	43 ± 11	$\textbf{48} \pm \textbf{4}$	49 ± 5
	U	55±8	40 ± 6	$\textbf{46} \pm \textbf{4}$	52 ± 3
	Fusion	69 ± 8	45 ± 12	49 ± 6	58 ± 4
OpenEAR	-	80 ± 8	49 ± 17	63 ± 7	57 ± 3

- This study evaluates different wavelet based TF representations to model emotional speech (CWT, BWT, SSWT).
- ► When comparing these three TF-based transformations, SSWT provides better results.
- In most of the cases the highest UARs are obtained with the features extracted from voiced segments.
- ► The fusion scheme shows to be useful to combine the information provided by both kinds of segments.
- The results with the proposed approach are better than those obtained with openEAR when classifying high vs. low arousal emotions.
- Further experiments shall be performed considering other descriptors extracted from the TF representations to improve the results in other classification tasks.

- This study evaluates different wavelet based TF representations to model emotional speech (CWT, BWT, SSWT).
- When comparing these three TF-based transformations, SSWT provides better results.
- In most of the cases the highest UARs are obtained with the features extracted from voiced segments.
- ► The fusion scheme shows to be useful to combine the information provided by both kinds of segments.
- The results with the proposed approach are better than those obtained with openEAR when classifying high vs. low arousal emotions.
- Further experiments shall be performed considering other descriptors extracted from the TF representations to improve the results in other classification tasks.

- This study evaluates different wavelet based TF representations to model emotional speech (CWT, BWT, SSWT).
- When comparing these three TF-based transformations, SSWT provides better results.
- In most of the cases the highest UARs are obtained with the features extracted from voiced segments.
- The fusion scheme shows to be useful to combine the information provided by both kinds of segments.
- The results with the proposed approach are better than those obtained with openEAR when classifying high vs. low arousal emotions.
- Further experiments shall be performed considering other descriptors extracted from the TF representations to improve the results in other classification tasks.

 This study evaluates different wavelet based TF representations to model emotional speech (CWT, BWT, SSWT).

- When comparing these three TF-based transformations, SSWT provides better results.
- In most of the cases the highest UARs are obtained with the features extracted from voiced segments.
- The fusion scheme shows to be useful to combine the information provided by both kinds of segments.
- The results with the proposed approach are better than those obtained with openEAR when classifying high vs. low arousal emotions.
- Further experiments shall be performed considering other descriptors extracted from the TF representations to improve the results in other classification tasks.

 This study evaluates different wavelet based TF representations to model emotional speech (CWT, BWT, SSWT).

- When comparing these three TF-based transformations, SSWT provides better results.
- In most of the cases the highest UARs are obtained with the features extracted from voiced segments.
- The fusion scheme shows to be useful to combine the information provided by both kinds of segments.
- The results with the proposed approach are better than those obtained with openEAR when classifying high vs. low arousal emotions.
- Further experiments shall be performed considering other descriptors extracted from the TF representations to improve the results in other classification tasks.

 This study evaluates different wavelet based TF representations to model emotional speech (CWT, BWT, SSWT).

- When comparing these three TF-based transformations, SSWT provides better results.
- In most of the cases the highest UARs are obtained with the features extracted from voiced segments.
- The fusion scheme shows to be useful to combine the information provided by both kinds of segments.
- The results with the proposed approach are better than those obtained with openEAR when classifying high vs. low arousal emotions.
- Further experiments shall be performed considering other descriptors extracted from the TF representations to improve the results in other classification tasks.

jcamilo.vasquez@udea.edu.co

Wavelet-Based Time-Frequency Representations for Automatic Recognition of Emotions from Speech

J. C. Vásquez-Correa^{1,2*}, **T. Arias-Vergara**¹, J. R. Orozco-Arroyave^{1,2}, J. F. Vargas-Bonilla¹, E. Nöth²

¹Department of Electronics and Telecommunication Engineering, University of Antioquia UdeA. ²Pattern recognition Lab. Friedrich Alexander Universität. Erlangen-Nürnberg.

*jcamilo.vasquez@udea.edu.co

・ロン ・日 ・ ・ ヨン・

34/34