Convolutional Neural Network to Model Articulation Impairments in Patients with Parkinson's Disease

Juan Camilo Vásquez-Correa^{1,2} Juan Rafael Orozco-Arroyave^{1,2}, Elmar Nöth²

¹GITA research group, University of Antioquia UdeA. ²Pattern recognition Lab. Friedrich Alexander Universität. Erlangen-Nürnberg. *jcamilo.vasquez@udea.edu.co*

18th INTERSPEECH, 2017

・ロット (雪) ・ ヨ) ・ ヨ)

Introduction

Methods

Experimental framework

Results

Conclusion

Introduction

Methods

Experimental framework

Results

Conclusion

<ロ><一><一</td><一><一</td>3/32

Introduction: Parkinson's Disease

- Second most prevalent neurological disorder worldwide.
- Patients develop several motor and non-motor impairments. (O. Hornykiewicz 1998).
- Speech impairments are one of the earliest manifestations.

< < >> < <</>

Speech impairments in PD patients: hypokinetic dysarthria

Introduction: Imprecise articulation

UNIVERSIDAD DE ANTIOQUIA

・ロット (雪) ・ ヨ) ・ ヨ)

- One of the most deviant speech dimensions in PD.
- Reduced velocity of lip, tongue, and jaw movements.
- Strong indication of the literature statement: imprecise consonants caused by reduced range of movements of articulators

イロト イポト イヨト イヨト 二日

7/32

PD patients have difficulties to begin and to stop the vocal fold vibration, and such difficulties can be observed on speech signals by modeling the transitions between voiced and unvoiced sounds

- To model the time-frequency (TF) information provided by the onset and offset transitions: short-time Fourier transform (STFT) and continuous wavelet transform (CWT).
- To "learn" features from time-frequency representations: convolutional neural network (CNN).
- Why TF and feature-learning? both have been successfully used in several paralinguistics tasks: emotion, deception, depression, and others.

Introduction

Methods

Experimental framework

Results

Conclusion

32

Onset and offset are detected according to the presence of the fundamental frequency.

Methods: Time-frequency representation

Ø.

STFT of onset for a PD patient (left) and a HC subject (right)

Play HC

イロト イポト イヨト イヨト

Methods: Time-frequency representation

UNIVERSIDAD DE ANTIOOUIA

13/32

CWT of onset for a PD patient (left) and a HC subject (right)

Methods: Convolutional neural network

UNIVERSIDAD DE ANTIOOUIA

イロト 不得 トイヨト イヨト

14/32

CNN learns high-level representations from the low-level raw data

Introduction

Methods

Experimental framework

Results

Conclusion

- Three databases with recordings in three languages: Spanish, German, and Czech.
- Diadochokinetic exercises, isolated sentences, read texts, and monologues.

Language	Description
Spanish	50 Patients and 50 Healthy controls.
	Balanced in age (60 years old) and gender.
	Patients in middle state of the disease.
German	88 Patients and 88 Healthy controls.
	Balanced in age (64 years old).
	patients in low and middle state of the disease.
Czech	20 Patients and 15 Healthy controls.
	All male speakers.
	Patients diagnosed during recording session.

Table: Databases

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- Classification of PD patients vs. HC subjects in the same language.
 - 10 fold cross-validation: 8 for training, 1 to optimize hyper-parameters, and 1 for test.
- Cross-language classification.
 - One language used for train and validation and other language used for test.

Support vector machine

¹Juan Camilo Vásquez-Correa et al. "Effect of acoustic conditions on algorithms to detect Parkinson's disease from speech". In: *International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2017, pp. 5065–5069. *B* + (E) + (E)

Introduction

Methods

Experimental framework

Results

Conclusion

TFR	Onset	Offset	Onset+Offset				
	Spanish						
CNN-STFT	85.3	81.6	85.9				
CNN-CWT	84.2	81.8	85.2				
Baseline	69.3	69.6	71.6				
German							
CNN-STFT	70.3	68.0	75.0				
CNN-CWT	68.0	66.9	70.5				
Baseline	72.7	70.9	74.0				
Czech							
CNN-STFT	77.9	80.4	84.4				
CNN-CWT	89.2	87.7	89.4				
Baseline	75.3	74.4	78.8				

TFR	Onset	Offset	Onset+Offset			
	Sp	anish				
CNN-STFT	85.3	81.6	85.9			
CNN-CWT	84.2	81.8	85.2			
Baseline	69.3	69.6	71.6			
German						
CNN-STFT	70.3	68.0	75.0			
CNN-CWT	68.0	66.9	70.5			
Baseline	72.7	70.9	74.0			
Czech						
CNN-STFT	77.9	80.4	84.4			
CNN-CWT	89.2	87.7	89.4			
Baseline	75.3	74.4	78.8			

<ロト < 団 > < 臣 > < 臣 > 臣 の < で 22/32

TFR	Onset	Offset	Onset+Offset			
	Sp	anish				
CNN-STFT	85.3	81.6	85.9			
CNN-CWT	84.2	81.8	85.2			
Baseline	69.3	69.6	71.6			
German						
CNN-STFT	70.3	68.0	75.0			
CNN-CWT	68.0	66.9	70.5			
Baseline	72.7	70.9	74.0			
Czech						
CNN-STFT	77.9	80.4	84.4			
CNN-CWT	89.2	87.7	89.4			
Baseline	75.3	74.4	78.8			

Figure: Output of the CNN after the last max-pool layer: PD patient (left) and a HC speaker (right)

(A) (B) (A) (B)

24/32

< < >> < <</>

<ロ> <同> <同> < 同> < 同> < 同> = 三目

Speech tasks	Spanish	German	Czech
read text	85.0	70.3	88.5
monologue	85.6	70.3	89.1
/pa-ta-ka/	85.4	70.7	89.2

SHC .	Sec
MA	illä.
3000	9JK
	le se
400 - 60 F	×
IVERSIDAD DI	E ANTIOOUIA

Test Lang.	TFR	onset	offset	onset+offset		
	Train with Spanish					
German	CNN-STFT	51.7	50.2	54.7		
German	Baseline	53.7	55.0	54.1		
Czech	CNN-CWT	55.2	55.4	57.9		
Czech	Baseline	60.3	57.4	60.4		
	Train	with Gern	nan			
Spanish	CNN-STFT	58.0	55.7	55.8		
Spanish	Baseline	53.5	53.5	53.6		
Czech	CNN-STFT	53.0	52.4	53.0		
Czech	Baseline	50.9	51.7	52.6		
Train with Czech						
Spanish	CNN-CWT	53.8	56.3	56.7		
Spanish	Baseline	53.4	51.6	52.4		
German	CNN-STFT	54.0	51.8	54.0		
German	Baseline	51.2	51.0	50.7		

		82	
	(₽)	115.	
230	30		
123		2 al	
VEDCIDA	D DE	ANTIC	OUTA
VERSIDA	D D E	ANTIC	OULA

Test Lang.	TFR	onset	offset	onset+offset	
	Train v	with Spar	nish		
German	CNN-STFT	51.7	50.2	54.7	
German	Baseline	53.7	55.0	54.1	
Czech	CNN-CWT	55.2	55.4	57.9	
Czech	Baseline	60.3	57.4	60.4	
-	Train	with Gern	nan		
Spanish	CNN-STFT	58.0	55.7	55.8	
Spanish	Baseline	53.5	53.5	53.6	
Czech	CNN-STFT	53.0	52.4	53.0	
Czech	Baseline	50.9	51.7	52.6	
Train with Czech					
Spanish	CNN-CWT	53.8	56.3	56.7	
Spanish	Baseline	53.4	51.6	52.4	
German	CNN-STFT	54.0	51.8	54.0	
German	Baseline	51.2	51.0	50.7	

SAL		Size.	
- M.C.	\$ @)	86	
ଂଶ୍ୱାନ	629	lle"	
		14	
100	75	લ્લા	
VERSIDAD	DE	ANTIC	опта

Test Lang.	TFR	onset	offset	onset+offset	
	Train v	with Spar	nish		
German	CNN-STFT	51.7	50.2	54.7	
German	Baseline	53.7	55.0	54.1	
Czech	CNN-CWT	55.2	55.4	57.9	
Czech	Baseline	60.3	57.4	60.4	
	Train	with Gern	nan		
Spanish	CNN-STFT	58.0	55.7	55.8	
Spanish	Baseline	53.5	53.5	53.6	
Czech	CNN-STFT	53.0	52.4	53.0	
Czech	Baseline	50.9	51.7	52.6	
Train with Czech					
Spanish	CNN-CWT	53.8	56.3	56.7	
Spanish	Baseline	53.4	51.6	52.4	
German	CNN-STFT	54.0	51.8	54.0	
German	Baseline	51.2	51.0	50.7	

Introduction

Methods

Experimental framework

Results

Conclusion

イロト 不得 とうほう イロト

- A deep learning approach is proposed to model articulation impairments of PD patients.
- Voiced-Unvoiced transitions are modeled with CNNs using STFT and CWT.

The proposed method is able to classify PD patients and HC subjects and improves the baseline when the language used for train and test is the same.

Conclusion

- Additional approaches should be proposed when the train and test language are different.
- Recurrent neural networks and other architectures may be considered to assess co-articulation.
- Deep learning approaches trained with phonation, articulation, and prosody information may be addressed to evaluate specific speech impairments.

Convolutional Neural Network to Model Articulation Impairments in Patients with Parkinson's Disease

Juan Camilo Vásquez-Correa^{1,2} Juan Rafael Orozco-Arroyave^{1,2}, Elmar Nöth²

¹GITA research group, University of Antioquia UdeA. ²Pattern recognition Lab. Friedrich Alexander Universität. Erlangen-Nürnberg. *jcamilo.vasquez@udea.edu.co*

18th INTERSPEECH, 2017

・ロット (雪) ・ ヨ) ・ ヨ)