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Abstract—Parkinson’s disease is a neurodegenerative
disorder characterized by a variety of motor symptoms.
Particularly, difficulties to start/stop movements have been
observed in patients. From a technical/diagnostic point of
view, these movement changes can be assessed by mod-
eling the transitions between voiced and unvoiced seg-
ments in speech, the movement when the patient starts
or stops a new stroke in handwriting, or the movement
when the patient starts or stops the walking process. This
study proposes a methodology to model such difficulties
to start or to stop movements considering information from
speech, handwriting, and gait. We used those transitions to
train convolutional neural networks to classify patients and
healthy subjects. The neurological state of the patients was
also evaluated according to different stages of the disease
(initial, intermediate, and advanced). In addition, we evalu-
ated the robustness of the proposed approach when consid-
ering speech signals in three different languages: Spanish,
German, and Czech. According to the results, the fusion of
information from the three modalities is highly accurate to
classify patients and healthy subjects, and it shows to be
suitable to assess the neurological state of the patients in
several stages of the disease. We also aimed to interpret the
feature maps obtained from the deep learning architectures
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with respect to the presence or absence of the disease and
the neurological state of the patients. As far as we know,
this is one of the first works that considers multimodal in-
formation to assess Parkinson’s disease following a deep
learning approach.

Index Terms—Parkinson’s disease, deep learning, convo-
lutional neural networks, speech, handwriting, gait.

|. INTRODUCTION

ARKINSON’S disease (PD) is the second most common
P neurodegenerative disorder in the world, and affects about
2% of people older than 65 years [1]. PD is characterized by
the progressive loss of dopaminergic neurons in the mid-brain
producing several motor and non-motor impairments [2]. Motor
symptoms include among others, bradykinesia, rigidity, resting
tremor, micrographia, and different speech impairments. Non—
motor symptoms include depression, sleep disorders, impaired
language, and others [3]. The level and characteristics of motor
impairments are currently evaluated according to the Move-
ment Disorder Society — Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) [4]. Section III of the scale contains sev-
eral items to assess motor impairments. The evaluation requires
the patient to be present at the clinic, which is expensive and
time-consuming due to several limitations including the avail-
ability of neurologist experts in the hospital and the reduced
mobility of the patients. The evaluation of motor capabilities is
crucial for clinical experts to make decisions about the medica-
tion dose or therapy exercises for the patients [5]. The analysis
of bio-signals such as gait, handwriting, and speech helps in
objectively assessing motor symptoms of patients, providing
additional and objective information to clinicians to make ac-
curate and timely decisions about the treatment. The research
community is interested in developing technology that helps the
automatic evaluation of the neurological state of PD patients
considering different bio-signals such as speech, handwriting,
and gait.

A. Assessment of PD From Speech

Speech symptoms in PD patients are grouped and typically
called hypokinetic dysarthria. They include monopitch, reduced
stress, imprecise consonants, and reduced loudness. One of
the first observed impairments was the imprecise production
of stop consonants such as /p/, /t/, /k/, /b/, /d/, and /g/ [6]. Other
symptoms include reduced duration of vocalic segments and
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transitions, and increased voice onset time [6], [7], which may
increase with the disease progression. Several studies have de-
scribed speech impairments developed by PD patients in terms
of different dimensions: phonation, articulation, prosody, and
intelligibility [8], [9]. Phonation symptoms are related to the
stability and periodicity of the vocal fold vibration. They have
been analyzed in terms of perturbation measures such as jit-
ter, shimmer, amplitude perturbation quotient, pitch perturba-
tion quotient, and non-linear dynamics measures [10], [11].
Articulation symptoms are related to the modification of po-
sition, stress, and shape of several limbs and muscles to pro-
duce speech. These symptoms have been modeled by vowel
space area, vowel articulation index, formant centralization ra-
tio, diadochokinetic analysis (DDK), and the onset energy [8],
[11], [12]. Prosody deficits are manifested as monotonocity,
monoloudness, and changes in speech rate and pauses. Prosody
analyses are mainly based on pitch and energy contours, and
duration [13].

Besides classical feature extraction methods to model patho-
logical speech, deep learning methods have been successfully
implemented in recent years to evaluate specific phenomena
in speech, including the detection and monitoring of PD [14],
[15]. These methods have improved the performance of the
models compared to the results obtained with classical machine
learning approaches. For instance, the “2015 Computational
Paralinguistics challengE (ComParE)” [16] had one of the sub-
challenges about the automatic estimation of the neurological
state of PD patients according to the MDS-UPDRS-III score.
The winners [14] reported a correlation of 0.65 using Gaus-
sian processes and deep neural networks (DNN) to predict the
clinical scores. In [17] it was proposed a deep learning model
to assess dysarthric speech. The model aimed to predict the
severity of dysarthria adding an intermediate interpretable hid-
den layer that contains four perceptual dimensions: nasality,
vocal quality, articulatory precision, and prosody. The authors
presented an interpretable output highly correlated (Spearman’s
correlation of up to 0.82) with subjective evaluations performed
by speech and language pathologists. In [18] the authors mod-
eled the composition of non-modal phonations in PD. The
authors computed phonological posteriors using deep neural
networks. Those phonological posteriors were used to predict
the dysarthria level of 50 PD patients and 50 HC speakers.
In [15] the authors modeled articulation impairments of PD
patients with time-frequency representations (TFR) and convo-
lutional neural networks (CNNs). The authors classified PD and
HC speakers considering speech recordings in three languages:
Spanish, German, and Czech, and reported accuracies from 70%
to 89%, depending on the language, indicating that deep learning
methods are promising to assess the speech of patients suffering
from PD.

B. Assessment of PD From Handwriting

PD patients show deficits in learning new movements, par-
ticularly in handwriting, patients exhibit impaired peak accel-
eration and stroke size, i.e., micrographia [19]. Speed in hand-
writing of PD patients is also reduced compared to age— and

gender—matched HC subjects [20]. Impaired force amplitude
and timing have also been observed [21]. In [22] the authors used
a smart pen with integrated acceleration and pressure sensors
to extract statistical and spectral features. The authors classified
PD vs. HC subjects and reported an accuracy of 89% using an
Adaboost classifier. In [23] the authors considered several ma-
chine learning methods to discriminate between PD patients and
HC subjects. The authors evaluated the in—air and on—surface
hand-movements with kinematics and pressure features, and
reported accuracies of up to 85%.

C. Assessment of PD From Gait

The most common manifestations of PD appear in gait, and
typically cause disability in patients. Several works have studied
the impact of PD in gait. In [24] the authors classified specific
stages and motor signs of PD using the Embedded Gait Analysis
using Intelligent Technology (eGalT) system. The authors iden-
tified different stages of the disease according to the UPDRS
scores. In [25] several inertial sensors attached to the lower and
upper limbs were used to predict the UPDRS scores of 34 PD
patients. The authors computed features related to stance time,
length of the stride, and velocity of each step, and reported a
Pearson’s correlation coefficient of 0.60 between the estimated
and real UPDRS scores. Recently, in [26] the authors proposed
two novel interpretable features to assess gait impairments in PD
patients: the peak forward acceleration in the loading phase and
peak vertical acceleration around heel-strike. These two features
encode the engagement in stride initiation and the hardness of
the impact at heel-strike, respectively. The features were cor-
related with the UPDRS-III scores of 98 PD patients and the
results indicated that the proposed features are suitable to eval-
uate the disease progression and loss of postural agility/stability
of patients.

D. Multimodal Analysis of PD

Although there are several works considering different bio-
signals to assess motor impairments of PD patients, most of
the studies consider only one modality. Multimodal analyses,
i.e., considering information from different sensors, have not
been extensively studied [27]. Additionally, the robustness of
the existing signal processing and classification algorithms has
not been enough tested using information from the combination
of multiple sensors. Although many improvements have been
shown in several tasks, there is still an absence of a multimodal
fusion system able to deliver an accurate prediction of the PD
severity [28] and to monitor the disease progression. In [22]
the authors combined information from statistical and spectral
features extracted from handwriting and gait signals. The fusion
of features improved the accuracy of the classification between
PD and HC subjects. In previous studies [29] we also found that
the combination of bio—signals improved the results regarding
the assessment of the motor capabilities of the patients. The
results improved in classification and regression experiments,
where the capability of the model to predict the disease severity
was evaluated.
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E. Contribution of This Study

On the basis of clinical evidence that shows difficulties of
patients suffering from PD to start and stop movements [7],
i.e., the transitions, and following the idea proposed in [11],
this paper introduces a methodology to model such transitions
in speech, handwriting, and gait signals. The aims of this work
include to evaluate the neurological state of the patients, to assess
specific impairments in the lower/upper limbs and muscles, and
to evaluate the impact of the disease in speech. To address these
aims, onset (to start voluntary movements) and offset (to stop
voluntary movements) transitions are detected in speech, on-
line handwriting, and gait. Speech transitions are detected when
the patients start/stop the vibration of vocal folds. Transitions
in handwriting are detected when the patient has the pen in
the air and puts it on the tablet’s surface, and gait transitions are
detected when the patient starts/stops walking. These transitions
are modeled considering a deep learning approach based on
CNNs. Several experiments are performed to classify PD vs.
HC subjects and to evaluate the neurological state of patients
in several stages of the disease. Specific motor impairments in
lower/upper limbs and in speech are assessed to classify the
patients into three stages of the disease (initial, intermediate,
and severe). We aim also to find an interpretation of the feature
maps obtained from the CNNs in each convolutional layer. We
obtained state-of-art results for the classification of PD vs. HC
subjects using multimodal information. As far as we know, this
is one of the first studies that considers multimodal information
to assess motor capabilities of PD patients using deep learning
approaches. Besides the multimodal analysis, the robustness of
the proposed approach is evaluated considering speech signals
in three different languages: Spanish, German, and Czech. These
kinds of multilingual experiments have been performed before
considering classical machine learning techniques [11] but not
with deep learning approaches.

II. DATA
A. Multimodal Data

The data contain recordings of speech, handwriting, and
gait collected from 44 (29 female) PD patients and 40 HC
subjects (18 female). Both groups are balanced in gender
[x2(0.05) = 7.21,d = 38,p = 0.99]. All of the subjects are
Colombian Spanish native speakers. None of the participants
in the HC group has history of symptoms related to PD or any
other kind of movement disorder. The patients were evaluated
by a neurologist expert and labeled according to the MDS-
UPDRS-III scale. All the patients were recorded in ON-state.
Most of them were under pharmacotherapy (unfortunately we
did not have access to the data of the medication doses), which
have shown to reduce the impact of speech impairments in PD
patients [30]. It also improves several gait symptoms, including
those assessed with the proposed approach, e.g., gait initiation
and freezing of gait [31]. For handwriting, the dopaminergic
medication has shown partial improvement in the kinematics
of the process [20]. The three bio-signals were captured in the

TABLE |
GENERAL INFORMATION ABOUT MULTIMODAL DATA. 1i: AVERAGE,
o: STANDARD DEVIATION

PD patients HC subjects
male female male female
Number of subjects 15 29 21 18
Age [years] (i £ o) 62.5 +9.7 57.8 £ 11.1 | 67.4 £ 128 60.5 £ 8.0
Range of age [years] 41-81 25-75 49-84 50-74
Disease duration [years] (u & o) 8.0+ 44 128 +£ 124

Range of disease duration [years] 1-15 0-43
MDS-UPDRS-III (i + o) 34.6 £ 22.1 363 £ 242
Range of MDS-UPDRS-IIT 8-82 9-106

same session during 1 hour, distributed as follows: 15 minutes
for speech, 30 minutes for gait, and 15 minutes for handwriting.
Table I shows demographic information of the subjects. We di-
vided the total MDS-UPDRS-III score into three sub-scores to
analyze specific impairments in the lower limbs, upper limbs,
and speech. The speech score ranges from O to 4 and corresponds
only to one item. The sum of the scores to asses upper and lower
limbs ranges from 0 to 56, corresponding to 14 items of the com-
plete scale. The division of the items is shown in Table II. Fig. 1
shows the distribution of the scores for the multimodal data.

Three classes are defined from each histogram to perform
multi-class experiments to discriminate between initial, inter-
mediate, and severe stages of the disease. For the complete
MDS-UPDRS-III score the ranges per class are defined as fol-
lows: 0 to 25 (initial), 25 to 50 (intermediate), and higher than
50 (severe). For the sub-scores related to lower and upper limbs,
the classes are defined as O to 10 (initial), 10 to 22 (intermedi-
ate), and higher than 22 (severe). Finally for the speech item,
we consider 0 as the initial stage, 1 as the intermediate stage,
and 2 or higher as the severe stage. The distribution and limits
of the scores per class are shown in Fig. 1. Note that one patient
could be in different classes per sub-score depending on which
limbs/muscles are more affected, e.g., the same patient could
be in initial stage in speech, intermediate in upper limbs, and
severe in lower limbs.

1) Recorded Data: The speech of the participants was
recorded with a sampling frequency of 16 kHz and 16-bit res-
olution. The participants pronounced six DDK exercises: the
rapid repetition of the syllables /pa-ta-ka/, /pe-ta-ka/, /pa-ka-
ta/, /pal/, ta/, and /ka/. Additionally, the corpus contain read
sentences, a read story of 36 words, and a monologue. Hand-
writing data consist of on-line drawings captured with a tablet
Wacom cintiq 13-HD' with a sampling frequency of 180 Hz.
The tablet captures six different signals: x-position, y-position,
in-air movement, azimuth, altitude, and pressure. The subjects
performed a total of 14 tasks divided into writing and drawing
tasks (See Table III for details of the performed tasks). To give
an idea of the information that can be obtained from the on-line
handwriting, Fig. 2 shows Archimedian spirals drawn by one
HC subject and three patients in different stages of the disease
(low, intermediate, and severe).

ICintiq 13HD Graphic pen tablet for drawing http://www.wacom.com/en-
us/products/pen-displays/cintiq-13-hd
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TABLE Il
DivisioN oF THE MDS-UPDRS-IIl SCORE INTO SuB-ITEMS FOR SPEECH, LOWER LIMBS, AND UPPER LIMBS

Item Description Group Item Description Group
3.1 Speech Speech 3.10 Gait Lower limbs
3.3b-c  Rigidity in right-left up extremities Upper limbs 3.11 Freezing of gait Lower limbs
3.3d-e  Rigidity in right-left low extremities Lower limbs 3.12 Postural stability Lower limbs
34 Finger tapping Upper limbs 3.13 Posture Lower limbs
3.5a-b  Left-Right hand movements Upper limbs 3.14 Global spontaneity of movement Lower limbs
3.6a-b  Pronation-Supination left-right hands ~ Upper limbs 3.15a-b  Postural tremor of left-right hands Upper limbs
3.7a-b  Left-Right toe tapping Lower limbs | 3.16a-b  Kinetic tremor of left-right hands Upper limbs
3.8a-b  Left-Right leg agility Lower limbs 3.17a-b  Rest tremor amplitude left-right up extremities Upper limbs
39 Arising from chair Lower limbs 3.17c-d  Rest tremor amplitude left-right low extremities ~ Lower limbs

3.18 Constancy of rest tremor Upper limbs

o

20 40 60 80 100 0 10 20

MDS-UPDRS-III score

40

30
MDS-UPDRS-IIl score lower limbs

20

15

1 2 4
MDS-UPDRS-III score speech

0 10
MDS-UPDRS-III score upper limbs

20 30 40 50 0

Fig. 1. Histograms for the complete MDS-UPDRS-III score and its
three sub-scales for upper limbs, lower limbs, and speech. Patients in
initial stage (green), patients in intermediate stage (blue), and patients
in severe stage (red).

TABLE IlI
HANDWRITING TASKS PERFORMED BY THE PARTICIPANTS

Writing tasks [ Drawing tasks

The name A circle

The ID number A cube

The numbers from 0 to 9 | Two rectangles
A template sentence* A house

A free sentence A diamond

The signature The Rey-Osterrieth figure
A spiral following a template

A free spiral

*Template sentence: El abecedario esabcdefghijklmnopqgrstuvwxyz,
which translates: The alphabetisabcdefghijklmnopgrstuvwxyz

Gait signals were captured with the eGalT system.” The sys-
tem consists of a 3D-accelerometer (range + 6 g) and a 3D
gyroscope (range +500°/s) attached to the lateral heel of the
shoes [24]. Data from both foot were captured with a sampling
rate of 100 Hz and 12-bit resolution. The tasks included 20 me-
ters walking with a stop after 10 meters (2 x 10 walk), and
40 meters walking with a stop every 10 meters (4 x 10 walk).

B. Additional Speech Data

Besides the multimodal data, we consider three additional
speech datasets with recordings in three languages: Spanish,
German, and Czech with the aim to evaluate the robustness
of deep neural networks when considering speech signals of

A. B.

Low Pressure

High Pressure

Fig. 2. (A) Spiral drawn by HC subject (male, 41 years old). (B) Spiral
drawn by PD patient in low state (male, 59 years old, MDS-UPDRS = 8).
(C) Spiral drawn by PD patient in intermediate state (female, 59 years
old, MDS-UPDRS = 33). (D) Spiral drawn by PD patient in advance state
(female, 73 years old, MDS-UPDRS = 64).

TABLE IV
GENERAL INFORMATION ABOUT THE SPEECH DATA IN EACH LANGUAGE.
PD: PARKINSON’S DISEASE. HC: HEALTHY CONTROLS. 11 ZAVERAGE,
o: STANDARD DEVIATION

PD patients HC subjects
male female male female

Spanish
Number of subjects 25 25 25 25
Age [years] (1 + o) 613 +£ 114 607 +73 | 605+ 116 61.4+70
Range of age [years] 33-81 49-75 31-86 49-76
Disease duration [years] (;v + o) 8.7 £ 58 126 £ 11.6
Range of disease duration [years] 1-20 1-43
MDS-UPDRS-III (i + o) 37.8 £22.1  37.6 + 14.1
Range of MDS-UPDRS-IIT 6-93 19-71

German
Number of subjects 47 41 44 44
Age [years] (u £ o) 66.7 + 9.0 66.1 £9.0 | 63.84+ 140 62.6 £ 13.9
Range of age [years] 44-82 42-84 26-83 28-85
Disease duration [years] (u =+ o) 6.5+ 58 6.8 +59
Range of disease duration [years] 1-19 1-30
UPDRS (u + o) 22.1 £ 109 233 +10.8
Range of UPDRS 543 6-55

Czech
Number of subjects 20 0 16 0
Age [years] (1 £ o) 61.0 = 12.0 - 61.8 £ 13.3 -
Range of age [years] 34-83 - 36-80 -
Disease duration [years] (i + o) 24 + 1.7 -
Range of disease duration [years] 0-7 -
UPDRS (p + o) 179 £ 173
Range of UPDRS 5-32 -
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PD patients and HC subjects in different languages. Table IV
summarizes the information of each database.

1) Spanish: The corpus considered here is the PC-GITA
database [32]. The data contain speech recordings of 50 PD
(25 women) and 50 HC (25 women) Colombian Spanish na-
tive speakers. All of them are balanced in age [£(0.05) =
—0.2878,p = 0.99]. Twenty of these patients participated also
in the collection of the multimodal data. All of the speakers
pronounced the same speech tasks that were considered in the
multimodal data. All of the patients were recorded in ON state,
i.e., no more than three hours after their morning medication,
and were evaluated by the same neurologist that participated in
the collection of the multimodal data.

2) German: The German data contain recordings of 88 PD
patients (41 women) and 88 HC subjects (44 women). The
speakers are balanced in age [¢(0.05) = —2,056,p = 0,02].
The speakers performed several speech tasks, including the rep-
etition of /pa-ta-ka/. Further details of this corpus can be found
in [13].

3) Czech: The Czech data are formed with recordings of
20 PD patients and 15 HC subjects. All of them are men. The
patients were newly diagnosed with PD, and none of them had
been medicated before or during the recording session. The
speakers are balanced in age [t(0.05) = 0.31,p = 0.31]. The
speakers performed several speech tasks, including the repeti-
tion of /pa-ta-ka/. Further details about this corpus can be found
in [33].

I1l. DETECTION OF THE START/STOP MOVEMENT

The transition movements in speech, handwriting, and gait are
detected individually upon each bio-signal to model difficulties
of the patients to start/stop the movement.

A. Transitions in Speech

A transition in speech occurs when the speaker starts or stops
the vocal fold vibration. We detected the transition from un-
voiced to voiced segments (onset) and from voiced to unvoiced
(offset). Those transitions are produced by the combination of
different sounds during the production of continuous speech.
Offsets and onsets are segmented according to the presence of
the fundamental frequency F{) using Praat. Once the borders are
detected, 80 ms of the signal are taken to the left and to the
right of each border, forming “chunks” of signals with 160 ms
length. Each chunk is transformed into a TFR using the short-
time Fourier transform (STFT). The TFR is used as input to the
deep learning architecture. Fig. 3 shows the difference in the
onsets between one HC subject and three patients in different
stages of the disease (low, intermediate, and severe). Note that
the HC speaker clearly defines the transition, conversely the
patients are not able to produce clean transitions.

2¢GalT - embedded Gait analysis using Intelligent Technology, http://
www.egait.de/

Frequency (Hz)

Frequency (Hz)

100
Time (ms) Time (ms)

Fig. 3. (A) STFT of an onset produced by a 75 years old female HC
subject. (B) STFT of an onset produced by a 72 years old female PD
patient in low state of the disease (MDS-UPDRS = 19). (C) STFT of
an onset produced by a 73 years old female PD patient in intermediate
state (MDS-UPDRS = 38). (D) STFT of an onset produced by a 75 years
old female PD patient in severe state (MDS-UPDRS = 52). All figures
correspond to the syllable /ka/.

Frequency (Hz) Frequency (Hz)
!

Time (s)

Fig. 4. (A) STFT of a gait onset produced by a 68 years old male HC
subject. (B) STFT of a gait onset produced by a 62 years old female
PD patient in low state (MDS-UPDRS = 19). (C) STFT of a gait onset
produced by a 65 years old male PD patient in intermediate state (MDS-
UPDRS = 43). (D) STFT of a gait onset produced by a 57 years old male
PD patient in severe state (MDS-UPDRS = 58). All figures correspond
to the 2 x 10 task.

B. Transitions in Gait

Gait transitions appear when the patient starts (onset) or stops
(offset) walking. These transitions are segmented according to
the presence of the fundamental frequency of the signal, which is
related to the acceleration of each stride. In addition, an energy-
based threshold is considered to improve the robustness in the
detection of onsets and offsets. Similar to speech, once a border
is detected frames of 3 s are considered to each side of the border
guaranteeing at least 3 quasi-periods in each “chunk” of signal.
The STFT is computed upon the onsets and offsets and it is used
as input for the deep learning model. Fig. 4 shows the difference
in the onset produced by one HC subject and three patients in
different stages of the disease (low, intermediate, and severe).
Theses images are extracted from the z-axis gyroscope signal
from the left foot. The six signals captured with the inertial
sensors are used as inputs to the deep learning architecture.
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Fig. 5. (A) Handwriting onset produced by a 68 years old male HC

subject. (B) Handwriting onset produced by a 48 years old male PD
patientin low state (MDS-UPDRS = 13). (C) Handwriting onset produced
by a 41 years old male PD patient in intermediate state(MDS-UPDRS
= 27). (D) Handwriting onset produced by a 75 years old female PD
patient in severe state (MDS-UPDRS = 108).

C. Transitions in Handwriting

Transitions in handwriting occur when a starting point of a
stroke is detected (onset), or when the pen takes-off the surface
of the tablet after drawing a stroke (offset). Once each border is
detected, segments of 200 ms are taken to the left and to the right
of the six signals captured with the tablet: horizontal movement
(x), vertical movement (y), distance between the surface and the
pen (z), azimuth angle, altitude angle, and pressure of the pen.
Fig. 5 shows the handwriting onset of one HC subject and three
patients in different stages of the disease (low, intermediate, and
severe). Note that the dynamics of the z-axis (black lines) is
different for PD patients and HC subjects before starting the
stroke (the first 0.5 s of the figure). Note that the resting tremor
in the PD patients is clearly observed, especially for the PD
patient in Fig. 5C, where oscillations around 7 Hz are observed
when the pen is in the air. Complementary material with figures
for all PD and HC subjects can be found on-line.?

V. DEEP LEARNING ARCHITECTURES

Architectures based on CNNs are considered as the deep
learning models in this study for several reasons: (1) the data
modalities considered here are in the form of multiple arrays e.g.,
2D speech and gait spectrograms, and 1D handwriting signals,
which makes CNNs the most suitable deep learning architec-
tures to process such information; (2) we aim to take advantage
of four key aspects of CNNs to process the bio-signals consid-
ered in this study: local connections, shared weights, pooling,
and the use of many layers; (3) CNNs are able to detect different
local motifs that may appear in the multiple dimension array due
to high correlations between neighbor values [34]. This concept
would allow to detect for instance spectral bands with more
energy density in speech or gait to discriminate between PD
patients and HC subjects.

A. Convolutional Neural Networks

A CNN is a variant of the standard neural networks. Instead of
using fully connected hidden layers, the CNN introduces a struc-
ture that consists of alternating convolution and pooling layers.

3https://github.com/jcvasquezc/images_deep_transition

TABLE V
NUMBER OF INPUTS OF THE CNNS FOR SPEECH, GAIT, AND HANDWRITING
SIGNALS. ¢: NUMBER OF CHANNELS

Input signal  Convolution Input size ¢ Num. inputs
Speech 2D 40 x65 1 2600
Gait 2D 60 x65 12 46800
Handwriting 1D 180 x1 16 2880

CNNss have been used in several tasks of speech and audio pro-
cessing like classification of pathological speech [15], detection
of events in audio, speech recognition, and others. CNNs are de-
signed to process data from multiple arrays, for instance a color
image formed by three channels (RGB), or two-dimensional ar-
rays that correspond to TFR of audio signals. CNNs introduce
a structure formed by alternating convolutional filters and pool-
ing layers instead of the fully connected layers of a DNN. The
input of a CNN is a tensor X € RP*9*¢_ where p, ¢ and ¢ can
be the number of vertical pixels, horizontal pixels, and channels
of an RGB image, respectively. The convolution is performed
between the input X and a weight tensor W € R™"*"*¢ pro-
ducing a hidden representation H € R(P—7+1)x(a-n+1)xd that
contains the extracted features from the input. n is the order of
the convolutional filter and d is the number of feature maps in
the convolutional layer. After the convolution, a pooling layer
is applied to remove variability that may appear due to external
factors like the speaking style or channel distortion. The last
layer of a CNN corresponds to a fully connected layer with
h hidden units followed by a sigmoid activation function to
make the final decision of whether the TFR corresponds to a PD
patient or a HC speaker. In this study, several CNNs are used
to extract information from speech, handwriting and gait. For
the speech and gait signals, two-dimensional (2D) CNNs are
trained to process the TFR created with the STFT of the tran-
sitions, as in previous studies [15]. As the speech recordings
are monophonic, in this case only one channel is considered
in the input of the CNNs. For gait analysis the input consists
of ¢ = 12 channels that contain signals of the accelerometer
and gyroscope in the X, y, and z-axes of the left and right foot.
For on-line handwriting, we consider a 1D CNN with ¢ = 16
channels that include information of the transition from in-air
to on-surface movement, or vice-versa. In this case the inputs
to the CNN consist of the raw data of eight signals: x—position,
y—position, z—position, pressure of the pen, azimuth angle, alti-
tude angle, on-surface trajectory (r), and angle of the trajectory
(6). All of them are captured in the transitions. The derivatives
of these data are also included to complete the 16 channels.
Table V summarizes the inputs received by the CNN for each
bio-signal. A STFT with 128 points is computed for speech and
gait, forming the 65 frequency indexes in the input. Frames of
16 ms with a time-shift of 4 ms are considered for the STFT
in the speech signals, forming a total of 40 frames. The frame
size in gait is 200 ms with a time-shift of 100 ms, forming
60 frames. Note that the number of inputs for gait is much
larger than the inputs for speech and handwriting, which gives
an idea about the complexity of the CNNs for each bio-signal.
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Fig. 6. CNN architectures implemented in this study.

TABLE VI
CNN ARCHITECTURE FOR MULTIMODAL ANALYSIS OF PD

Input (Speech; handwriting; gait)

Convolutional layer 1 (ReLU unit)
Convolutional layer 2 (ReLU unit)
Max-pooling layer 1

Dropout 1

Convolutional layer 3 (ReLU unit)
Convolutional layer 4 (ReLU unit)
Max-pooling layer 2

Dropout 2

Fully connected hidden layer (ReLU unit)
Fully connected hidden layer (ReLU unit)

Output layer (Sigmoid unit)

Fig. 6 shows the CNN architecture used in this study.
Fig. 6A depicts a 2D-CNN with two convolutional and max—
pooling layers followed by a fully connected layer that receives
the TFRs as input from speech or gait. Fig. 6B illustrates a 1D-
CNN with 2 convolutional and pooling layers to process the raw
information of the transitions in handwriting.

The CNNs are trained using the stochastic gradient descent
(SGD) algorithm. The cross—entropy between training labels
y and the model predictions 7 is used as the loss function
for classification. This cost function is related to the negative
log-likelihood of the model. The root mean square propaga-
tion is considered as a mechanism to adapt the learning rate in
each iteration ¢ for each parameter of the network. The method
divides the learning rate 77 by an exponentially decaying av-
erage of squared gradients using Equations (1) and (2) [35],
where ¢’ indicates the derivative of the parameters © in the ¢-th
iteration.

G(0)" =0.9G(0)* Y 0.1/ (01)2 (1)

0 1

G(O)1 @

Additionally, rectifier linear (ReLU) activation functions are
used in the convolutional layers, and dropout is included in the
training stage to avoid over—fitting. The architecture of the CNN
implemented in this study consists of four convolutional layers,
two max-pooling layers, dropout to regularize the weights, and
two fully connected hidden layers followed by the output layer
to make the final decision using a sigmoid activation function.
Details of this architecture are summarized in Table VL.

B. Fusion

Individual CNNs are trained for each modality, afterwards
multimodal assessment is performed by combining the three
bio-signals in 3 steps: (1) the feature maps from the last hidden
layer of each CNN are averaged across the different tasks and
transitions of a given subject. The aim is to form one feature
vector with information of all tasks per subject and per bio-
signal; (2) the embeddings obtained from the three bio-signals
are concatenated to form a multimodal vector per subject; and
(3) the created feature vectors are used to classify PD patients
and HC subjects using a radial basis SVM.

C. Baseline

Conventional feature sets and traditional machine learning
methods from related studies are considered to compute the
baseline. The speech signals are modeled with the 88 features
of the extended Geneva minimalistic acoustic parameter set
(EGeMAPS) [36], which are extracted using the OpenSMILE
toolkit [37]. Handwriting strokes are modeled with kinematics
features based on the trajectory, velocity, and pressure of the
pen, which were used in previous studies [23], [29]. Gait fea-
tures include kinematics measures based on the length of the
stride, velocity of each step, swing time, and stance time [24],
[29]. All features are classified using a radial basis SVM. The fu-
sion baseline is based on the early fusion approach with features
of the three bio-signals.

D. Validation

The experiments are validated with the following strategy:
80% of the data are used for training, 10% are used to optimize
the hyper-parameters, i.e., development set, and the remain-
ing 10% of the data are used for test. The process is repeated
10 times with different partitions of the test set to guarantee that
every participant is only tested once.

The hyper-parameter tuning is performed with a Bayesian
optimization approach [38] due to the large number of hyper-
parameters that needs to be optimized. Bayesian optimization
is one of the sequential model-based optimization (SMBO)
algorithms. The hyper-parameter tuning is an optimization prob-
lem, where we find the hyper-parameters that maximize the
performance of the model on the development set. SMBO al-
gorithms use previous observations of a loss function f, to de-
termine the next (optimal) point to sample f. The Bayesian
optimization assumes that the loss function f can be described
by a Gaussian Process (GP). The GP induces a posterior distribu-
tion over the loss function f that is analytically tractable, which
allows us to update f, after we have computed the loss for a new
set of hyper-parameters. The Expected Improvement (EI) is
used as the optimization function for the Bayesian optimization
algorithm. The EI is the expected probability that a new set
of hyper-parameters will improve the current best observation.
El is defined as EI(3) = E[max{0, f(8) — f(B)}], where 3 is
the current set of hyper-parameters and B is the current opti-
mal set of hyper-parameters. EI will give us the point that in
expectation improves the most upon f. The Bayesian
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TABLE VII
RANGE OF THE HYPER-PARAMETERS USED TO TRAIN THE CNNS

Values

{3,5,7}
{4,8,16,32,64}

{16, 32, 64,128}
{0.0001,0.0005,0.001}
{0.1,0.2---0.9}

Hyper-parameter

Filter size convolutional layers

Depth of convolutional layers

Hidden units in fully connected layers
Learning rate

Probability of dropout

TABLE VI
MULTIMODAL CLASSIFICATION OF PD PATIENTS AND HC SUBJECTS.
Acc. Test: ACCURACY IN THE TEST SET, Acc. Dev.: ACCURACY IN THE
DEVELOPMENT SET, AUC: AREA UNDER THE ROC CURVE, N.: NUMBER OF
PARAMETERS IN THE CNN

Bio-signal Acc. Test Acc. Dev. AUC N.
Speech baseline 74.5+1.7 77.04+2.4  0.841

Speech onset 923£12.3 99.4+£0.7  0.963 140055
Speech offset 83.5+6.6 99.1+£0.7  0.925 135389
Gait baseline 63.0+8.9 66.0+3.1 0.725

Gait onset 80.3+10.3  83.3+89  0.878 326977
Gait offset 78.8£16.0 87.8£5.1  0.901 1231016
Handwriting baseline  67.1+4.2 67.7£1.7  0.725
Handwriting onset 60.4£3.5 95.744.0  0.634 142517
Handwriting offset 66.5+5.5 98.1+1.7  0.699 255560
Fusion baseline 89.0+7.8 87.8£3.1 0.944

Fusion onset 97.6+2.9 98.84+0.6  0.988 609549
Fusion offset 84.3+5.8 86.0+1.4  0.890 1621965

optimization algorithm can be summarized according to the
following steps:
1) Given observed values of f(/3), update the posterior ex-
pectation of f using the GP model.
2) Find B,y that maximizes EI(f5).
3) Compute the loss function for f(Byew )-

We use the accuracy in the development set as the optimiza-
tion function f(3), and the hyper-parameters set 3 is formed
with the filter size of each convolutional layer of the CNN (n;),
the number of feature maps in each convolutional layer (d;),
the number of hidden units in the fully connected layers h; and
ho, the initial learning rate 7, and the probability of dropout.
The range of the hyper-parameters to be optimized is shown in
Table VII. In addition a batch-size of 64 samples and a total of
150 epochs are considered.

V. EXPERIMENTS AND RESULTS

A. Classification of PD Patients vs. HC Subjects
Considering Multimodal Data

The results considering speech, handwriting, and gait are
shown in Table VIII, which includes accuracy in the devel-
opment and test sets, area under the receiving operating char-
acteristic curve (AUC) and number of parameters in the CNN.
The best results are obtained with the fusion of the three bio-
signals (accuracy of 97.6%). This result exceeds those obtained
with each bio-signal separately and with early-fusion (the base-
line). Results obtained with traditional features extracted per
bio-signal are also included in Table VIII. Note that the results
obtained with the proposed approach in speech and gait exceed
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Fig. 7. ROC curves for the classification of PD patients vs. HC subjects
using speech, handwriting, and gait.

those obtained in the corresponding baselines in 17.8% and
17.3%, respectively.

Table VIII shows the reduction of the accuracies obtained
in development and test. In speech the decrease ranges between
6.7 and 15.6%. The results in gait are relatively more stable with
a decrease ranging from 0.8 to 9.0%. Handwriting seems to be
the least robust for generalization purposes. The difference in
the accuracy obtained in development and test ranges between
9.5 and 35.3%. It is interesting to note that the accuracies in de-
velopment obtained with gait are lower than those with speech
and handwriting. This fact can be explained due to the difference
in the number of transitions, which limits the amount of informa-
tion considered to generate the proposed model. In speech and
handwriting, there are several (more than 5) transitions, while
in gait there is only one transition in the case of the 2 x 10 task,
and three in the case of the 4 x 10 task. Further experiments,
considering tasks with more transitions, e.g., heel-toe taping,
are required to validate this hypothesis. The only relatively high
difference between the results for onset and offset is observed
in speech. Such a difference could be likely explained because
the DDK tasks, e.g., rapid repetition of the syllables /pa-ta-ka/,
are mainly designed to assess the capability of speakers to per-
form onsets [39]. This behavior was also observed in previous
experiments [15]. Finally, Table VIII includes the number of
required parameters in the CNNs per modality. Note that gait is
the modality that requires the largest number. This is expected
because gait signals have the largest number of inputs, as it was
shown in Table V. In order to show the results in a more compact
way, Fig. 7 shows the ROC curves for the best results of each
modality. It can be observed that the performance in speech and
gait exceeds the results obtained with handwriting.

B. Classification of PD Patients vs. HC Subjects
Considering Speech Signals in Different Languages

The generalization capability of the proposed approach is
tested in several cross-language experiments. In this case only
the DDK exercises of the Spanish, German, and Czech datasets
are considered. The speech recordings of the three languages
were re-sampled to 16 kHz. CNNs were trained with features
extracted from onsets/offsets of recordings of one language and
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Fig. 8. Classification of PD and HC subjects in the cross-language
experiments. (A) Train with Spanish and test on German and Czech.
(B) Train with German and test on Spanish and Czech. (C) Train with
Czech and test on German and Spanish.

tested upon recordings of the other two languages separately.
Additionally, the improvement of the accuracy is analyzed when
moving portions of the data in the target language to the data
in the training set. The recordings of the target language are
included in the test set and excluded from the training set to
avoid bias. The process was repeated incrementally from 0% to
90% in steps of 10%. The results are depicted in Fig. 8. Each
point corresponds to the result of the aforementioned process.
The results obtained with the onsets are in most of the cases
slightly higher than those obtained with the offsets. This be-
havior supports what we have observed in the experiments with
multimodal data. Although the proposed approach is based on
DDK exercises, which in theory are language independent, note
the influence of language when no data from the target language
is added to the training set, especially when the test is in the
German data (Figs. 8A and 8C). The language influence is re-
duced when moving portions of the data in the target language
to the data in the training set, especially when the system is
trained with Spanish utterances and tested with German record-
ings (Fig. 8A), and when the train set is Czech and the test set is
German (Fig. 8C). In general, the results indicate that the pro-
posed approach is robust against different languages, and that
the DDK tasks seem to be appropriate to assess motor speech
deficits in different languages. Further experiments with sen-
tences, read texts, and spontaneous speech signals are required
to address other research questions like the influence of the
language in the disease manifestation and progression [40].

C. Analysis of Hidden Layers of CNNs

Fig. 9 shows the output of the second and fourth convolutional
layers of the CNN trained with the onsets of the DDK tasks. Four
feature maps are computed for the second layer, and eight for the
fourth. Note that the border in the transition is more evident in
the hidden layers than in the input, which may be explained due
to the max pooling layer that removes non-relevant information
from the spectrograms.

The output of the hidden layer for the gait signals is shown
in Fig. 10. The 12 input channels depicted in Fig. 10A are
transformed into the eight feature maps shown in Fig. 10C in
the fourth convolutional layer, forming embeddings that contain
the most suitable information to classify PD patients and HC
subjects. Some of the outputs of the hidden layers of the CNN
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Fig. 9. Output of the CNN for the convolutional layers trained with
speech onsets extracted from the DDK tasks. (A) Input of the CNN.
(B) Outputs of the second layer. (C) Outputs of the fourth layer.
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are “turned-off”, due to the regularization effect of the dropout,
indicating that not all of the feature maps are necessary to make
the final decision.

The statistical difference of the computed feature maps be-
tween HC subjects and PD patients for speech, gait, and hand-
writing is evaluated with Kruskal-Wallis H-tests. The aim is to
find which are the most discriminating feature maps and hidden
layers to classify PD patients vs. HC subjects. This knowledge
can help in finding possible interpretations about local features
learned by the CNN in each layer, and in understanding how
those features are related to the presence of the disease. The
Kruskal-Wallis H-test is a non-parametric method for testing
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TABLE IX
KRUSKAL-WALLIS TEST TO EVALUATE THE STATISTICAL DIFFERENCE
BETWEEN HC SUBJECTS AND PD PATIENTS IN THE FEATURES LEARNED BY
THE CNNS FOR SPEECH, GAIT, AND HANDWRITING IN THE CONVOLUTIONAL
LAYERS 2 AND 4

TABLE X
CLASSIFICATION OF HC SUBJECTS AND PD PATIENTS IN THREE STAGES OF
THE DISEASE USING SPEECH SIGNALS. PD,.: PATIENTS IN LOW,
INTERMEDIATE, AND SEVERE STATE ACCORDING TO THE MDS-UPDRS-III
SCORE. RESULTS IN % AND ABSOLUTE VALUES (IN PARENTHESIS)

Convolutional layer 2 Convolutional layer 4
Speech  Gait Handwriting | Speech  Gait Handwriting MDS-UPDRS-II score
p-val p-val p-val p-val p-val p-val Speech onset UAR=37.8% Speech offset UAR=37.2%
feature map 1 0.03 0.14 0.23 <0.05 0.1 0.39 e ?4(36 - 51’1?1 = l]’(l)?;; - ggz " SZCO . 2’?1(2) 11)(1))3 o glzs(l)
?ef‘l:ure map g %06[:5 g‘zg 8‘;? <003'(])5 8‘25 gé? PDi 6439 00 (0) 357(5) 00 (©) | 186(11) 000 2143) 00 (0)
cature map - - - - - - PD, 556(10) 1L1(2) 333(6) 00 (0) | 667(12) 00(©) 3336 00 (0)
feature map 4 0.06 0.86 0.99 0.66 0.29 0.47 PD; 167(1) 167(1) 3332 333(2) | 167(1) 00(0) 500(3) 33.3(2)
feature map 5 0.77 0.93 0.48 0.01 -
feature map 6 0.02 <0.05 0.75 0.62 MDS-UPDRS-III sub-score (speech item)
feature map 7 0.49 0.08 0.84 0.98 Speech onset UAR=54.9% Speech offset UAR=45.4%
feature map 8 0.82 <0.05 0.73 0.04 HC PD; PDy PD3 HC PD; PDy PD3
HC  923(36) 00 (0) 51 2 26 (1) [ 94937 00 ©) 00 ©0) 51 ()
PD;  100(1) 50.0(5) 2002 2002 | 100(1) 2002 5005 200 (2)
PD, 438(7) 62 (I) 312(5) 188(3) | 125(2) 63 (I) 437(7) 37.5(6)
whether samples are originated from the same distribution. In 22 00 © 230G) 08® 4626 | 134@ 134@ 4626 206
this experiment it is used to evaluate the null hypothesis that
the medians of the population of the tested groups are equal. TABLE XI

The results are shown in Table IX. The second convolutional
layer from speech rejects the null hypothesis for almost all of
the feature maps (p-val < 0.05). Some of the outputs of the
fourth layer for speech signals show also significant differences
between the PD and HC subjects. For gait signals, non of the
feature maps of the hidden layers provide significant difference
between the PD and HC subjects. This fact could be explained
by two reasons: (1) the number of transitions in gait is much
smaller than those observed in handwriting or speech, and (2) the
number of inputs in the CNN for gait is much higher than those
in speech and handwriting, as it was observed in Table V. These
results also indicate that the fully connected hidden layers after
the convolutional layers are those that provide the information
to discriminate between PD and HC subjects. For handwriting,
some of the features from the fourth layer have significant dif-
ference between PD and HC subjects, which supports the con-
venience of using those features learned by the CNN in that
layer for the classification problem.

D. Assessment of the Neurological State

Two experiments are performed to assess the neurological
state of the patients. The first one aims to classify the patients
into different stages of the disease according to the complete
MDS-UPDRS-III scale. A total of four classes are defined ac-
cording to the score assigned by the neurologist. This experiment
is performed with each modality separately and with their com-
bination. The results are shown in terms of the confusion matri-
ces in Table X for speech, Table XI for handwriting, Table XII
for gait, and Table XIII for the combination. The unweighted
average recall (UAR) is computed as the global performance
score. It is used to avoid bias due to the unbalance in the groups
and it can be interpreted as an average ratio of the true positives
per class.

The second experiment aims to classify the patients consid-
ering only those items of the MDS-UPDRS-III scale that are
intended to evaluate those specific limbs and muscles of the
body that are involved in gait, handwriting, and speech. Only
those items of the total MDS-UPDRS-III scale that evaluate the
motor capability of the lower limbs, upper limbs, and speech
are considered to assess gait, handwriting and speech deficits,

CLASSIFICATION OF HC SUBJECTS AND PD PATIENTS IN THREE STAGES OF
THE DISEASE USING HANDWRITING SIGNALS. PD,, : PATIENTS IN LOw,
INTERMEDIATE, AND SEVERE STATE ACCORDING TO THE MDS-UPDRS-III
SCORE. RESULTS IN % AND ABSOLUTE VALUES (IN PARENTHESIS)

MDS-UPDRS-III score
Handwriting onset UAR=54.9%

Handwriting offset UAR=51.9%

HC PD; PD, PD3 HC PD; PDy PD3

HC 94937 26 (I) 00 (0) 26 (1) | 97438 26 (I) 00 (0) 00 (0)
PD; 357(5) 357(5 214(3) 71 () | 3575 214@3) 286 1432
PDy 222(4) 167(3) 556(10) 56 (1) | 1L1(2) 167 3) 556 (10) 167 (3)
PD3 333 167(1) 167(1) 333() | 0.0 (0) 167() 500(3) 333()

MDS-UPDRS-III sub-score (upper limbs)
Handwriting onset UAR=50.9% Handwriting offset UAR=49.7%

HC PD; PD> PD3 HC PD; PD: PD3

HC 94937 26 (1) 26 (I) 00 (0) | 923(36) 51 (2) 26 (1) 00 (0)

PD;  300(3) 2002 5005 00 (0) | 40.0@) 100 (1) 400&) 100 (1)

PD, 143 (3) 48 (1) 762(16) 48 (1) | 190@) 48 (1) 71415 48 (1)

PDs 00 (0) 00 (0) 87.5(7) 125(1) | 00 (0) 00 (0) 750(6) 250 (2)
TABLE XIl

CLASSIFICATION OF HC SUBJECTS AND PD PATIENTS IN THREE STAGES OF
THE DISEASE USING GAIT SIGNALS. PD,. : PATIENTS IN LOW, INTERMEDIATE,
AND SEVERE STATE ACCORDING TO THE MDS-UPDRS-IIl SCORE.
RESULTS IN % AND ABSOLUTE VALUES (IN PARENTHESIS)

MDS-UPDRS-III score
Gait onset UAR=48.6%

Gait offset UAR=50.9%

HC PD; PDy PD3 HC PD; PDy PD3

HC 974 (38) 00 (0) 26 () 00 (0) [ 949370 00 ©0) 51 2 00 (0
PD; 357(5) 357(5 286(4) 00 (0) | 286(4) 143(2) 5718 00 (0)
PDy 333(6) 167(3) 444(8) 56 (1) | 222 1112 6L1(AD 56 (1)
PD3 3332 167(1) 333(2) 167(1) | 167(1) 00 (0) 5003 333(2)

MDS-UPDRS-III sub-score (lower limbs)
Gait onset UAR=46.8%

Gait offset UAR=37.6%

HC PD; PDy PD3 HC PD; PDy PD3

HC 97438 26 (I) 00 (0) 00 (0) | 89735 26 (1) 26 () 51 (2

PD; 750(12) 63 (1) 125(2) 63 () | 500(8) 125@2) 313(5) 63 (1)

PD; 188(3) 125(2) 50.0(8) 188(3) | 50.0(8) 125(2) 313() 63 (1)

PD3 167(1) 00 (0) 500(3) 3332 | 3332 167(1) 3332 167(1)
TABLE XIII

CLASSIFICATION OF HC SUBJECTS AND PD PATIENTS IN THREE STAGES OF
THE DISEASE USING THE COMBINATION OF SPEECH, HANDWRITING, AND
GAIT SIGNALS. PD,.: PATIENTS IN LOW, INTERMEDIATE, AND SEVERE STATE
ACCORDING TO THE MDS-UPDRS-IIl SCORE

MDS-UPDRS-III score
onset UAR=55.6%

offset UAR=45.2%

HC PD; PD, PD3 HC PD; PDy PD3

HC 1000 39) 00 00 (0) 00(0) | 974 (38 000 26 (D) 0.0 ()
PD; 0.0 (0) 500 (7) 429(6) 7.0(1) | 214(3) 0.0 (0) 786 (1) 0.0 (0)
PDy 0.0 (0) 22@) 722(13) 56() | 112 56(1) 833(15) 0.0 (0)
PD3 0.0 (0) 667 (4) 333(2) 000 | 167(1) 000 833() 0.0 (0)
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Fig. 11.  Examples of drawings and onset transitions detected for miss-

classified subjects. (A) PD patient in low state (PD;) detected as HC
subject. (B) HC classified as PD patient in low state (PD;). (C) Patient
in severe state (PD3) classified as HC. (D) Patient in severe state (PD3)
classified as PD patient in intermediate state (PD,).

respectively. The distribution of these three groups in the total
scale is shown in Table II. The patients are grouped into three
classes according to the specific sub-scales and they are classi-
fied separately. The division of the sub-scales is summarized in
Fig. 1. The results of the experiment are also shown in the con-
fusion matrices of Table X for speech, Table XI for handwriting,
and Table XII for gait.

The classification according to the total MDS-UPDRS-III
score indicates that the highest UAR values are obtained with
handwriting onsets and offsets, which can be explained because
the high number of transitions that appear during the writing
process, thus it can be expected to find more information in
this modality than in the other two. The lowest UAR values
are obtained with the speech signals, which was expected
considering that the MDS-UPDRS-III scale only considers one
item related to speech (see Table II), thus to classify groups
according to the complete MDS-UPDRS-III scale considering
only speech signals is a very difficult (and to some extent unfair)
problem. The confusion matrices indicate that HC subjects are
accurately classified compared to patients in different stages,
i.e., the proposed approach has a high specificity. In addition,
patients in the first stage of the disease (PD; ) are miss-classified
mainly as HC (some of the cases are mis-classified as PD,),
which is consistent with the disease progression. Patients in a
severe stage are more commonly miss-classified as patients in
the intermediate than patients in the first stage or HC subjects.
Fig. 11 shows some examples of drawings and transitions of
miss-classified handwritings. The house in Fig. 11B was drawn
by a miss-classified HC subject who used less uniform strokes
than those used by some patients. This can occur due to external
factors such as education level, less contact with technology,
or aging (the subject was 75 years old at the moment of
the recording session). Conversely, drawings of PD patients
detected as HC subjects (Figs. 11A, and 11C) show relatively
stable strokes, compared to those of the PD patient in Fig. 11D,
who is in severe state but was classified in intermediate state.

Table XIII indicates that the fusion of the three bio-signals im-
proves the results in the classification of PD patients in different
disease stages. Note that the fusion is highly accurate to detect
HC subjects (100% with onset). Most of the miss-classified PD

patients in low and severe stages are detected as PD patients
in intermediate state. Note also that patients in severe stage are
always miss-classified. We think that these results should im-
prove with more data from patients in severe stage (we only had
6 PD patients in that stage). Regarding the classification of pa-
tients according to specific items of the scale for speech, upper
limbs, and lower limbs, high UARSs are obtained with handwrit-
ing and speech signals. The results obtained with speech signals
to predict the speech item of the neurological scale are higher
than those obtained when considering the total score. Confusion
matrices show consistent results when predicting the total MDS-
UPDRS-III scores. HC subjects are more accurately classified
than patients in several stages of the disease. Patients in initial
stages are commonly miss-classified as HC subjects and patients
in severe stages are miss-classified in the intermediate stage.

VI. CONCLUSION

This paper presents a multimodal analysis of motor abilities
of PD patients considering deep learning architectures based on
TFRs and CNNs such that integrate information from speech,
handwriting and gait signals. The proposed method models the
difficulty of patients to start/stop the movement of muscles in
lower and upper limbs, and in speech. Three main experiments
were performed: (1) classification of PD patients and HC sub-
jects, (2) classification of PD patients in different stages of the
disease according to the total MDS-UPDS-III score, and (3)
classification of PD patients in different stages of the disease
according to specific impairments in lower and upper limbs,
and in speech, considering sub-scores of the MDS-UPDRS-III
scale. The experiments suggest that the proposed approach is
highly accurate to classify PD patients and HC subjects using
information of speech, handwriting, and gait separately. The re-
sults obtained with the proposed approach are higher than those
obtained with traditional machine learning techniques. Addi-
tionally, the accuracy of the system improved up to 97.3% when
information from the three bio-signals is merged. The classifi-
cation of different stages of the disease shows that speech and
handwriting are the most accurate. This fact can be explained
because the transitions modeled in this study appear less fre-
quently in gait than in speech or handwriting. It is necessary to
evaluate other tasks with more transitions to obtain more accu-
rate results. For instance, transitions that appear in the step cycle
phase during the heel strike could show other gait impairments
and increase the data to train more robust deep learning models.
In order to do this, a more robust strategy to segment each step
separately is needed to assess the onset/offset per step [41].

The models trained in this study show to be useful to char-
acterize speech impairments of patients in three different lan-
guages: Spanish, German and Czech. This is validated only rapid
repetitions of the syllables /pa-ta-ka/. Further experiments may
be performed with more speech tasks to validate the language
independence of the proposed approach.

The feature maps learned by the CNN trained with the
multimodal data allow to interpret the hidden representations
of the neural network. The first convolutional layers of the
CNN trained with TFRs of speech show significant differences
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between PD patients and HC subjects. Similar results are ob-
tained with the last layer of the CNN trained with handwriting.

The proposed approach seems to be promising to classify
PD patients in different stages of the disease. The fusion of the
three bio-signals is the most accurate approach to classify PD
patients in different stages of the disease. The miss-classification
errors appear mainly with patients in the initial stage which are
miss-classified as HC subjects. Similarly, most of the patients
in advanced stages are miss-classified as patients in interme-
diate stages of the disease, which indicates that the proposed
approach makes errors that to some extent coincide with the
natural progress of the disease.

CNNs seem to be suitable to model the difficulties of PD
patients to start/stop the movements of different limbs, which
allows the accurate classification of PD patients and HC sub-
jects. In addition, the proposed architectures seem to be promis-
ing to classify different stages of the disease. Other architec-
tures such as those based on recurrent neural networks and long
short-term memory units should be considered in future works
to model time-dependences of consecutive transitions and the
co-articulation phenomena in speech. Recent advances in deep
learning including the densely connected networks, or time-
delay neural networks could be implemented as additional deep
learning—based feature extraction approaches to model different
bio-signals collected from PD patients.

The proposed approach can be extended to other applications
also useful in the clinics. For instance it could be potentially used
to detect prodromal stages of the disease, which would benefit
the development of future neuroprotective therapies [42]. There
is supporting evidence showing that the detection of prodromal
stages of PD is possible from speech [9] and gait [43]. The main
difficulty of these kinds of studies is to find the patients because
it is necessary to recruit them before the disease to appear. Once
the target group is found, it is required to start their monitoring
over time in order to understand which are the patterns that
become abnormal when early signs of the disease appear. Our
research team in Medellin (Colombia) is currently collecting
data from pre-clinical genetic subjects (people who have a gene
mutation responsible for producing PD but with no clinical signs
of the disease). We hope to find promising results in the near
future. Another potential application for the proposed approach
could be the discrimination between PD and other neurological
disorders with similar symptoms, such as Huntington’s disease
or essential tremor. There is also evidence for this application
in the literature, especially for speech [44] and gait [45].
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