

Convolutional Neural Networks and a Transfer Learning Strategy to Classify Parkinson's Disease from Speech in Three Different Languages

Juan Camilo Vasquez-Correa^{1,2}, Tomás Arias-Vergara^{1,2,3}, Cristian D. Rios-Urrego², Maria Schuster³ Jan Rusz⁴, Juan Rafael Orozco-Arroyave^{1,2}, and Elmar Nöth¹

¹Pattern Recognition Lab. Friedrich-Alexander University, Erlangen-Nürnberg, Germany. ²Faculty of Engineering. Universidad de Antioquia UdeA, Medellin, Colombia. ³Ludwig-Maximilians-University, Munich, Germany.

⁴Czech Technical University in Prague, Prague, Czech Republic.

24th Iberoamerican Congress on Pattern Recognition (CIARP 2019) Havana (Cuba), 28th-31st October 2019

- Second most prevalent neurological disorder worldwide.
- Patients develop several motor and non-motor impairments.
- Speech impairments are one of the earliest manifestations

- Second most prevalent neurological disorder worldwide.
- Patients develop several motor and non-motor impairments.
- Speech impairments are one of the earliest manifestations

Motor impairments include:

- Bradykinesia
- Rigidity

Recognition

- Resting tremor
- Gait deficits
- Dysarthria

 Evaluated by neurologist experts according to the MDS-UPDRS-III scale

Background: Parkinson's Disease

Speech impairments in PD patients: hypokinetic dysarthria

- Reduced loudness
- Monotonic speech
- Breathy voice

- Hoarse voice quality
- Imprecise articulation

Motivation

- Clinical observations in the speech of patients can be automatically measured to address two main aspects:
 - 1. To support the diagnosis of the disease.
 - 2. To predict the level of degradation of the speech of the patients.

Motivation

- Many studies in the literature to classify PD from speech are based on computing hand-crafted features and using classifiers such as support vector machines (SVMs) (Moro 2019, Arora 2019, Benba 2019).
- There is a growing interest in the research community to consider deep learning models in the assessment of the speech of PD patients (Vasquez-Correa 2018, Korzekwa 2019).
- However, in a language independent scenario the results are not satisfactory (accuracy<60%).
- The classification of PD from speech in different languages has to be carefully conducted to avoid bias towards the linguistic content present in each language.

Hypothesis

- The results in the classification of PD in different languages could be improved using a transfer learning strategy.
- We propose a methodology to classify PD via a transfer learning strategy to improve the accuracy in different languages.
- CNNs trained with utterances from one language are used to initialize a model to classify speech utterances from PD patients in a different language.

Data

- Spanish, German, and Czech utterances.
- Diadochokinetic exercises, read text, and a monologue.
- Age and gender balanced.

	Spanish		German		Czech	
	PD	нс	PD	НС	PD	нс
Subjects	50	50	86	86	50	50
Age	61.0	61.0	66.5	63.2	62.7	61.9
Time since diagnosis	10.7	-	7.0	-	6.7	-
MDS-UPDRS-III	37.7	-	22.2	-	19.8	-

Methods

Feature extraction

Classification

• A CNN is trained to process the Mel spectrograms extracted from the transitions

• Individual CNNs are trained with the utterance from each language

UNIVERSIDAD DE ANTIOQUIA

Transfer learning

Baseline

- Hand-crafted features extracted from the onset and offset transitions
 - 12 Mel frequency cepstral coefficients (MFCCs)
 - Log energy in 22 Bark bands
- Support vector machine (SVM) classifier with a Gaussian kernel.

Results obtained with the CNNs trained for each language individually.

Target language	Accuracy (%)			
	Baseline	Base CNN		
Spanish	73.7 (13.0)	71.0 (15.9)		
German	69.3 (9.9)	63.1 (11.7)		
Czech	61.0 (12.5)	68.5 (14.1)		

Results obtained with the pretrained CNNs in a different language, ie., Transfer learning (TL).

Target language	Accuracy (%)					
	Baseline	Base CNN	Pretrained CNN Spanish	Pretrained CNN German	Pretrained CNN Czech	
Spanish	73.7 (13.0)	71.0 (15.9)	-	70.0 (12.5)	72.0 (13.1)	
German	69.3 (9.9)	63.1 (11.7)	77.3 (11.3)	-	76.7 (7.9)	
Czech	61.0 (12.5)	68.5 (14.1)	72.6 (13.9)	70.7 (14.5)	-	

Results obtained with the pretrained CNNs in a different language, ie., Transfer learning (TL).

Target language	Accuracy (%)					
	Baseline	Base CNN	Pretrained CNN Spanish	Pretrained CNN German	Pretrained CNN Czech	
Spanish	73.7 (13.0)	71.0 (15.9)	-	70.0 (12.5)	72.0 (13.1)	
German	69.3 (9.9)	63.1 (11.7)	77.3 (11.3)	-	76.7 (7.9)	
Czech	61.0 (12.5)	68.5 (14.1)	72.6 (13.9)	70.7 (14.5)	-	

Results obtained with the pretrained CNNs in a different language, ie., Transfer learning (TL).

Conclusion

- Transfer learning strategy to classify PD from speech in three different languages: Spanish, German, and Czech.
- The transfer learning among languages aimed to improve the accuracy when the models are initialized with utterances from a different language than the one used for the test set.
- The transfer learning improved the classification of the German and Czech models, using a Spanish base model.
- Further experiment: to train base models with utterances from two languages instead of only one.
- Future study: transfer learning among diseases, i.e., training a base model to classify PD, and use it to initialize another one to classify other neurological diseases.

References

(Moro 2019) Moro-Velazquez, L., et al. (2019). A forced gaussians based methodology for the differential evaluation of Parkinson's Disease by means of speech processing. *Biomedical Signal Processing and Control, 48*, 205-220.

(Arora 2019) Arora, S., Baghai-Ravary, L., & Tsanas, A. (2019). Developing a large scale population screening tool for the assessment of Parkinson's disease using telephone-quality voice. *The Journal of the Acoustical Society of America*, *145*(5), 2871-2884.

(Benba 2019) Benba, A., et al. (2019). Voice signal processing for detecting possible early signs of Parkinson's disease in patients with rapid eye movement sleep behavior disorder. *International Journal of Speech Technology*, 22(1), 121-129.

(Vasquez-Correa 2018) Vásquez-Correa, J.C. et al. (2018). A Multitask Learning Approach to Assess the Dysarthria Severity in Patients with Parkinson's Disease. *Proc. Interspeech* (pp. 456-460).

(Korzekwa 2019) Korzekwa, D. et al. (2019). Interpretable Deep Learning Model for the Detection and Reconstruction of Dysarthric Speech. *Proc. Interspeech 2019*, 3890-3894.

Thank you for your attention, Questions?

Camilo Vasquez

Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany

] juan.vasquez@fau.de

*** * * ***

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No 766287.

TAP>S