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Introduction

e High-dimensional feature sets like MFCCs or embeddings from

neural networks are rarely used for medical applications due to

their lack of interpretabillity.

Phonological features can be more comprehensible for clinicians

than the traditional acoustic features used in speech processing.

Phonological features are represented by a vector with

explainable information about the mode and manner of

articulation of the speaker.

e These features are commonly understood by clinicians since they
are related with movements of the articulators in the vocal tract.
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Aim:

1. To map high-dimensional feature vectors into explainable feature
vectors called phonological posteriors that can be
comprehensible for the medical community.

2. To create an open source toolkit to estimate phonological
posteriors based on bidirectional RNNs with gated recurrent units

(GRUs).
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Figure 1: (a) Architecture of Phonet, (b) Example of the vocalic, stop, nasal, and strident
phonological posteriors estimated for the sentence “mi casa tiene” in Spanish language. (c¢)
Posteriorgram obtained for the Spanish sentence “mi casa tiene tres cuartos”.

Phonological posteriors Results

e Estimation of Phonological posteriors

e The phonetic units of a language can be grouped into
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3. Back 0.882 9. Continuant 0.861 15. Labial 0.885
Phonological classes 4. Anterior 0.889 10. Flap 0.895 16. Dental 0.898
1. Vocalic 7. Nasal 13. Lateral 5. Open 0.841 11. Trill 0.986 17. Velar 0.930
2. Consonantal 8. Stop 14. Strident 6. Close 0.901 12. Voiced 0.885 18. Pause 0.958
3. Back 9. Continuant 15. Labial Table 2: Recognition of the phonological classes using Phonet
4. Anterior 10. Flap 16. Dental
5. Open 11. Trill 17. Velar e Phoneme recognition
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* 17 hours of FM podcasts in Mexican Spanish. (RORTREREREEEEWEE TR

Predicted phoneme

e The corpus was forced-aligned at phoneme level [2].

* The aligned phonemes were used as labels to train models for KedeYale [VE3le]a

phoneme recognition and for the estimation of the phonological
posteriors.

e The accuracy of the models ranges from 80.4% to 93.3%,
depending on the phonological class.

e Phonet was trained to recognize posteriors in Spanish. However,
the training process can be adapted to other languages.

e Future models will include the estimation of phonological
posteriors for the English and German languages.

e [he trained models are available as an open-source toolkit.
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