

Modelling of Speech Aspects in Parkinson's Disease by Multitask Deep Learning

Master's thesis

Martin Strauß, 21.06.2019

Supervisor: Prof. Dr.-Ing. Elmar Nöth, M.Sc. Juan Camilo Vásquez-Correa, PD Dr.-Ing. Tino Haderlein

Motivation Background Data **Methods and experiments Results Discussion Conclusion and Outlook**

Motivation Background Data Methods and experiments Results Discussion **Conclusion and Outlook**

Motivation

Recognition

Parkinson's disease (PD) second largest neurodegenerative disorder¹

Speech impairments are one of the earliest manifestations

Speech is affected in various dimensions including articulation, and phonation, prosody and intelligibility (hypokinetic dysarthria):

- Reduced loudness
- Monotonic speech
- Breathy voice

etc.

→ Underrepresented in PD evaluation²

[1] Tysnes et al. (2017), Journal of Neural Transmission [2] Ramig et al. (2008), Expert Review of Neurotherapeutics

PD assessment

Movement Disorder Society – Unified Parkinson's disease rating scale (MDS-UPDRS)⁴:

- Third section with 33 items evaluates disease progression (MDS-UPDRS-III)
- Rated between 0-4
- → Only one aspect related to speech
- → Patient is required to be with a physician
- → Subjectivity

[4] Goetz et al. (2008), Movement Disorders

PD assessment

Movement Disorder Society – Unified Parkinson's disease rating scale (MDS-UPDRS):

- → Only one aspect related to speech
- → Patient is required to be with a physician
- → Subjectivity

Frenchay Dysarthria Assessment (FDA):

- Items like reflexes, respiration, lips movement etc.
- → Patient is required to be with a physician
- → Subjectivity

- modified-FDA (m-FDA)⁵: Assessment only relies on speech recordings

[5] Vásquez-Correa (2018), Journal of Communication Disorders

Motivation

Parkinson's disease (PD) second largest neurodegenerative disorder¹

Speech impairments are one of the earliest manifestations → Underrepresented in PD evaluation²

Disease assessment like MDS-UPDRS-III and m-FDA are highly subjective

→ Computational based methods to increase objectivity and enable long-term monitoring

[1] Tysnes et al. (2017), Journal of Neural Transmission [2] Ramig et al. (2008), Expert Review of Neurotherapeutics

Motivation Background Data Methods and experiments Results Discussion **Conclusion and Outlook**

Background

Various feature extraction and machine learning methods already exist

Success of Deep Learning (DL) now also in PD speech assessment tasks³

→ Most studies concentrate on one aspect like PD vs. healthy controls classification

→ Multitask Learning (MTL) approaches allow to evaluate multiple aspects at once

[3] Vásquez-Correa et al. (2017), In Interspeech 2017

Multitask learning

Optimize more than one loss function

 \rightarrow Loss weight factor γ

Hard parameter sharing with shared layers and individual task layers

→ Idea: Multiple tasks share representations creating more general feature maps⁶ $L(\theta) = \gamma L_1(\theta) + (1 - \gamma)L_2(\theta)$

$$L(\theta) = \sum_i \gamma_i L_i(\theta)$$

$$\sum_i \gamma_i = 1$$

[6] Caruana (1997), Machine Learning

Related work

Vásquez-Correa et al.⁷:

- 11 speech aspects jointly optimized in CNN
- Voiced and unvoiced speech segments as input
- Up to 4 percent points increased accuracy by MTL approach
- → MTL creates more generalizable feature maps

[7] Vásquez-Correa et al. (2018), In Interspeech 2018

Main aims

Apply a MTL neural network framework to PD speech data

Evaluate the proposed approach compared to single task networks and a baseline algorithm

Motivation Background Data Methods and experiments Results **Discussion Conclusion and Outlook**

Data set

94 PD and 87 HC Spanish native speakers from Colombia

Recordings obtained in various sessions performing different exercises

 \rightarrow In total 5145 utterances included into the data set

Task description

DDK, Sentences, Monologue, Reading text

Acoustic condition:

Soundproof booth, Portable soundproof booth, Headset, At-home

Task number	Task name	Number of classes
1.	PD vs. HC	2
2.	MDS-UPDRS-III	4
3.	m-FDA	4
4.	Acoustic condition	4
5.	Exercise	4
6.	Gender	2
7.	Age	4

Task description Tasks: PD vs. HC MDS-UPDRS-III m-FDA **Knowledge features Exercises:** DDK, Sentences, Monologue, Reading text **Acoustic condition:** Soundproof booth, Portable soundproof booth, Headset, At-home Age Gender

Your Name | LME | Short title

Labelling procedure

Classes defined using percentiles

HC are assumed to have lower UPDRS values then PD patients

 \rightarrow Part of the first class

Missing m-FDA labels for HC were estimated using SVR⁸

[8] Vásquez-Correa et al. (2018), Journal of Communication Disorders

Motivation Background Data Methods and experiments Results Discussion **Conclusion and Outlook**

openSMILE⁹ features

https://www.audeering.com/opensmile/

Precomputed features using the openSMILE software

Open source feature extractor also used e.g. in the Interspeech ComPar challenge¹⁰

1428 features per utterance as input data

[9] Eyben et al. (2013), In Proceedings of the 21st International conference on Multimedia [10] Schuller et al. (2010), In Interspeech 2010

Architecture

Experimental setup

10 fold cross validation with parameter optimization (Ir, dropout prob., hidden layers)

Architectures: Adaboost baseline

Single task networks MTL different experiments MTL all seven tasks

	Loss function weight factor γ						
Experiment	PD vs. HC	MDS-UPDRS-III	m-FDA				
1	0.8	0.1	0.1				
2	0.1	0.8	0.1				
3	0.1	0.1	0.8				
4	learned	learned	learned				

Metrics:

Accuracy

Unweighted average recall Session based evaluation

Motivation Background Data **Methods** Results Discussion **Conclusion and Outlook**

Experimental results

Adaboost results

Task	ACC (%)	UAR (%)	Session (%)
PD vs. HC	80.70	77.21	85.71
MDS-UPDRS-III	53.29	32.14	63.77
m-FDA	36.56	33.78	40.28

MTL with focus on PD vs. HC

Task	ACC (%)	UAR (%)	Session (%)
PD vs. HC	73.16	72.49	81.73
MDS-UPDRS-III	46.79	34.45	52.45
m-FDA	37.30	35.94	43.56

Single task results

Task	ACC (%)	UAR (%)	Session (%)
PD vs. HC	71.82	71.12	78.22
MDS-UPDRS-III	29.46	29.13	36.23
m-FDA	36.83	34.50	40.52

Motivation Background Data Methods and experiments Results Discussion **Conclusion and Outlook**

Adabo	0	st				Task			ACC (%)	UAR	(%) §	Session (%)
						PD v	s. HC		80.70	77.2	21	85.71
The algorithn	n is	able to	o diffe	erentia	ate Pl	D vs. HC MDS	-UPI	DRS-III	53.29	32.1	.4	63.77
						m-FI	DA		36.56	33.7	8	40.28
Related to the	e in	nbalan	ce of	the da	ata							
MDS-UDPRS-			Predic	ction					Predi	ction		
		1	2	3	4			1	2	3	4	
	1	1719	165	112	116		1	0.81	0.08	0.05	0.05	5
Deference	2	311	76	76	79	Deference	2	0.57	0.14	0.14	0.15	5
Kelerence	3	234	109	98	108	Kelefelice	3	0.43	0.20	0.18	0.20)
	4	264	41	110	75		4	0.54	0.08	0.22	0.15	5
(a) C	onfusior	n matrix	x		(b) No	orma	lized c	onfusion	matrix		

 \rightarrow Putting a high weight on the first class still reaches decent results

Single task networks

Showing the worst results

Task	ACC (%)	UAR (%)	Session (%)
PD vs. HC MDS-UPDRS-III	71.82 29.46	71.12 29.13	78.22 36.23
m-FDA	36.83	34.50	40.52

Parameter optimization shows more complex models (more layers) are chosen \rightarrow *More regularization necessary*

Problems with overfitting or local minimums

Multitask networks

Best results for focusing on PD vs. HC

Task	ACC (%)	UAR (%)	Session (%)
PD vs. HC	73.16	72.49	81.73
MDS-UPDRS-III	46.79	34.45	52.45
m-FDA	37.30	35.94	43.56

Comparable results to the baseline, but better than individual networks

MDS-UDPRS-I			Predic	ction					Predi	ction	
	_	1	2	3	4			1	2	3	4
	1	1351	129	300	332		1	0.64	0.06	0.14	0.16
Deference	2	208	57	90	187	Deference	2	0.38	0.11	0.17	0.35
Reference	3	216	65	90	178	Kelefence	3	0.39	0.12	0.16	0.32
	4	211	28	21	230		4	0.43	0.06	0.04	0.47
(a) Confusion matrix				(b) Normalized confusion matrix							

Adding more tasks does not help

Confidence score

Based on the softmax output and the true PD vs. HC labels

Motivation Background Data Methods and experiments Results Discussion **Conclusion and Outlook**

Conclusion

- Simple Adaboost baseline delivers solid results
- MTL approach superior to single task networks
- No clear advantadge over the Adaboost baseline
- Adding more tasks does not increase the performance

Outlook

- Add a fifth class to the MDS-UPDRS-III task for the HC samples
- Find the best trade-off model working for all folds
- Convert the MDS-UPDRS-III and m-FDA tasks into a regression problem
- Combine proposed approach with other approaches (e.g. CNN)
- Investigate larger feature sets
- Obtaining the missing labels

References

[1] O. - B. Tysnes and A. Storstein. "Epidemiology of Parkinson's disease". *Journal of Neural Transmission*, 124(8):901-905, 2017

[2] L. O. Ramig, C. Fox and S. Sapir. "Speech treatment for Parkinson's disease". *Expert Review of Neurotherapeutics*, 8(2):297-309, 2008

[3] J. C. Vásquez-Correa, J. R. Orozco-Arroyave, and E. Nöth. "Convolutional Neural Network to Model Articulation Impairments in Patients with Parkinson's Disease". In

Proceedings of Interspeech 2017, pages 314–318, 2017.

[4] C. G. Goetz, et al. "Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results". Movement disorders: official journal of the Movement Disorder Society, 23(15):2129–2170, 2008.

References

[5] J. C. Vásquez-Correa, J. R. Orozco-Arroyave, T. Bocklet, and E. Nöth. "Towards an automatic evaluation of the dysarthria level of patients with Parkinson's disease". Journal of Communication Disorders, 76:21–36, 2018.

[6] R. Caruana. "Multitask Learning". Machine Learning, 28(1): 41-75, 1997

[7] J. C. Vàsquez-Correa, T. Arias, J. R. Orozco-Arroyave and E. Nöth. ``A Multitask Learing Approach to Assess the Dysarthria Severity in Patients with Parkinson's Disease". In *Interspeech 2018*, pages 456-460, ISCA, 2018

[8] J. C. Vásquez-Correa, J. R. Orozco-Arroyave, T. Bocklet, and E. Nöth. "Towards an automatic evaluation of the dysarthria level of patients with Parkinson's disease". Journal of Communication Disorders, 76:21–36, 2018

References

[9] F. Eyben, F. Weninger, F. Gross and B. Schuller. "Recent Developments in openSMILE, the Munich Open-Source Multimedia Feature Extractor". In *Proceedings of the ACM international conference on Multimedia – MM '13*, pages 835-838. ACM Press, 2013

[10] B. Schuller, S. Steidl, A. Batlinger, S. Hantke, F. Hönig, J.R. Orozco-Arroyave, E. Nöth, Y. Zhang and F. Weninger. "The INTERSPEECH 2010 Paralinguistic Challenge". In *Proceedings of Interspeech 2010*, ISCA, 2010

More information?

Portable soundproof booth

m-FDA label estimation

Based on a Support vector regression approach

PD vs. HC results

 Adaboost
 Prediction

 PD
 HC

 Reference
 PD
 479

 HC
 496
 1069

 (a) Confusion matrix
 Kongo
 Kongo

(a) Confusion matrix

Prediction PD HC Reference PD 0.86 0.14 HC 0.32 0.68 (b) Normalized confusion matrix

(b) Normalized confusion matrix

		Prediction		
		PD	HC	
Deference	PD	0.74	0.26	
Reference	HC	0.29	0.71	

(b) Normalized confusion matrix

Additional confidence scores

More tables

Samples per Exercise

Exercise	PD	HC	
DDK	1411	552	1933
Sentences	1588	870	2458
Read text	292	87	379
Monologue	289	86	375
Total	3580	1565	5145

Percentile ranges

Task	0-25	25-50	50-75	75–100
Age	< 55	55-63	63–68	68 <
MDS-UPDRS-III	< 22	22-34	34-45	45 <
m-FDA	< 19	19–25	25-31	31 <

Number of samples per percentile

Task	0–25	25-50	50-75	75–100
Age	1246	1507	1253	1079
MDS-UPDRS-III	2112	542	549	490
m-FDA	1586	1165	1412	982