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List of Figures

3.1 Phase space from gait signal produced by: A: YHC subject, B: EHC subject 8
3.2 Phase space from gait signal produced by: A: PD patient in low state of the

disease (MDS-UPDRS-III=6 for lower limbs), B: PD patient in intermediate
state of the disease (MDS-UPDRS-III=13 for lower limbs). C: PD patient in
severe state of the disease (MDS-UPDRS-III=34 for lower limbs) . . . . . . 9
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3.5 Poincaré sections from gait signals produced by A: PD patient in low state

of the disease (MDS-UPDRS-III=6 for lower limbs), B: PD patient in inter-
mediate state of the disease (MDS-UPDRS-III=13 for lower limbs). C: PD
patient in severe state of the disease (MDS-UPDRS-III=34 for lower limbs) . 18

3.6 Representation of the characteristics of a GMM . . . . . . . . . . . . . . . . 20

4.1 KNN selection representation with K=5 . . . . . . . . . . . . . . . . . . . . . 21
4.2 Best fitting hyperplane for the example training set S . . . . . . . . . . . . . 23
4.3 Architecture of the random forest model . . . . . . . . . . . . . . . . . . . . 24
4.4 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Ilustration of One-dimensional linear regression with the ε-insensitive ”tube” 27

5.1 Interface eGaiT and shoe with its attached inertial sensor. . . . . . . . . . . 31

6.1 ROC curve graphics of the best NLD Features results. A) PD vs YHC. B)
PD vs EHC. In both cases the fusion of features from both feet and both
tasks are considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 KNN Scores of NLD Features: A) PD vs YHC Fusion Both Feet task. B)
PD vs EHC Fusion Both Feet task. . . . . . . . . . . . . . . . . . . . . . . 38

6.3 SVM Scores of NLD Features: A) PD vs YHC Fusion Both Feet task. B)
PD vs EHC Fusion Both Feet task. . . . . . . . . . . . . . . . . . . . . . . 39

6.4 RF Scores of NLD Features: A) PD vs YHC Fusion Both Feet task. B) PD
vs EHC Fusion Both Feet task. . . . . . . . . . . . . . . . . . . . . . . . . . 39

4



Gait Assessment of Patients with Parkinson’s Disease using Inertial Sensors and
Non-Linear Dynamics Features

6.5 ROC curve graphics of the best Poincaré Features results. A) PD vs YHC
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Abstract

Parkinson’s disease is a neuro-degenerative disorder characterized by different motor
symptoms, including several gait impairments. Gait analysis is a suitable tool to sup-
port the diagnosis and to monitor the state of the disease. The gait of the patients is
mainly evaluated from signals captured with inertial sensors attached to the limbs of the
patients, where kinematics features are commonly computed. However, there are non-
linear effects of the gait process that cannot be properly characterized with the kinematic
features. This study proposes the use of non-linear dynamics features extracted from
gait signals obtained from inertial sensors for the automatic detection of the disease. It
is considered classical non-linear features such as the correlation dimension, the largest
Lyapunov exponent, and the Hurst exponent, among others. In addition we propose a
novel non-linear analysis based on applying a Gaussian mixture model to find clusters in
Poincaré sections. The non-linear dynamics features are used to discriminate between
Parkinson’s patients and healthy subjects, and to classify patients in several stages of the
disease.

The obtained results point out that it is possible to perform the discrimination between
PD patients and healthy subjects with accuracies up to 93%. Classifying patients in sev-
eral stages of the disease with accuracies up to 65%. As far as we know, this is one
of the first studies that considers a full non-linear dynamics analysis to assess the gait
impairments of patients with Parkinson’s disease.



Chapter 2

Introduction

2.1 Context

Parkinson’s disease (PD) is a neuro-degenerative disorder characterized by the progres-
sive loss of dopaminergic neurons in the mid brain [1], which are in charge of controlling
movement and emotions. Motor symptoms include lack of coordination, tremor, rigidity
and postural instability. Gait impairments appear in most of patients and include freezing,
shuffling, and festinating gait. The standard scale to evaluate the neurological state of
the patients is the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) [2]. The third section (MDS-UPDRS-III) of the scale evaluates the deficits
in the motor system, besides it contains 14 items dedicated to the lower extremities of
the patients. The therapy mainly focuses on treating the symptoms of the patients with
individual medication. This medication dose always has to be adjusted according to the
current stage of disease.

Gait changes are a hallmark of PD, where the main symptoms include reductions in
speed, decreased step length, altered cadence, and increased gait variability. While gait
abnormalities are not pronounced in the early stages, their prevalence and severity in-
creases with the disease progression [3]. More than 85% of PD patients develop gait
impairments after three years of diagnosis [3]. The potential consequences of gait impair-
ments in PD may include increased disability, increased risk of falls, and reduced quality of
life. As the disease progresses, PD patients typically exhibit shuffling gait with a forward-
stooped posture and festinating gait. These characteristics make the patient to spend a
lot of energy, which causes that the walking routine leads the patients to their maximum
metabolic capacity [4]. Gait impairments also include the presence of bradykinesia, rigid-
ity, and postural instability, reducing the quality of life. In addition, PD patients consider
mobility and walking limitations to be one of the most impaired aspects of the disease.
Patients consistently identify improvement in walking as the most relevant outcome when
rating the success of the treatment for the disease [5].
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2.2 State of the art

In related studies, the scientific community has shown interest in the gait analysis to eval-
uate the neurological state of PD patients. Gait analysis has been performed commonly
with inertial sensors e.g., accelerometers and gyroscopes attached to the shoes of the
patients [6–8].

One of the first studies was performed in [9], where the authors classified gait signals
captured from 42 PD patients and 39 healthy control (HC) subjects using the eGait sys-
tem [10], which consisted of accelerometers and gyroscopes attached to the lateral heel
of the shoe. The participants performed several exercises, including the straight walking
of 10 meters 4 times (4× 10), heel-toe tapping, and circling foot movements. The au-
thors computed several spectral and statistical features from the gait signals, including
the energy content in different frequency bands, entropy, the root-mean square energy
and others. The classification of HC subjects and PD patients was performed with sev-
eral classifiers. The results indicated that it was possible to classify PD patients vs. HC
subjects with accuracies up to 82%. The accuracy improved up to 91% when considering
only PD patients in severe state of the disease.

In [7] the authors proposed an algorithm to segment the strides of PD patients based
on the dynamic time warping (DTW) algorithm. The authors developed a stride template
using gait information from 25 HC subjects. The segmentation algorithm was tested with
information from 40 HC subjects, 15 PD patients and 25 geriatric patients, who performed
a 40 m straight walking exercise. The proposed approach showed to be accurate to seg-
ment the steps of the patients (F-score up to 0.9).

In [11] the authors proposed to evaluate a set of features to perform an early detection
and monitoring PD implementing a classification between PD patients and HC subjects
by Linear Discriminant Analysis (LDA). The authors considered kinematic features such
as step distance, stride time, stance and swing phases and others, and frequency-domain
characteristics from the signals such as amplitude, power distribution, frequency disper-
sion, and others. The database was obtained from force-sensitive resistors [12] in each
foot of 93 idiopathic PD patients and 73 HC subjects, this while they walked at their usual,
self-selected pace for approximately 2 minutes on level ground. The above was digitized
and recorded at 100 samples per second. Accuracies up to 86.9% when using the kine-
matic feature set.

In [8] the authors considered inertial sensors attached to the chest and to the kneels
to evaluate the neurological state of 34 PD patients according to the UPDRS score. The
participants performed several exercises, including 20 meters walking, rising from a chair,
and foot tapping. The authors computed kinematic features such as the standing time,
the stride length, the stride velocity, and others. The regression algorithm was based on
K-nearest neighbors (KNN) algorithm to predict the MDS-UPDRS-III score of the patients,
based on LA, S2S, and G tasks of it. A Spearman’s correlation coefficient (ρ) of 0.60 was

Chapter 2 Paula Andrea Pérez Toro 2
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reported for the prediction.
In [13] the authors proposed a statistical transformation called shifted one-dimensional

local binary pattern domain to classify gait signals from PD patients and HC subjects col-
lected in different conditions and with a different experimental protocol. The authors con-
sidered three different databases for their experiments, forming a dataset with signals col-
lected from 93 PD patients and 73 HC subjects. The data were collected using 8 sensors
to measure the pressure of the foot when the subjects walk. The authors computed sev-
eral statistical features from the available data. The extracted features were transformed
with the proposed method, and they were classified using eight different algorithms. The
highest accuracy was obtained with a multi-layer perceptron classifier (88.9%).

In [14] the authors classified gait signals obtained from 15 PD patients and 16 HC
subjects. The signals were captured with ultra-thin force-sensitive switches placed inside
the shoes of the participants. The authors computed several kinematics features such as
the stride time, the swing time, the stance time, among others. Afterwards, the features
extracted from each foot were used to compute a phase synchronization coefficient and
the conditional entropy, with the aim to analyze the gait rhythm fluctuations between both
feet. The authors considered several classifiers. The most accurate results were reported
with a multi-layer perceptron, where an area under the receiving operating characteristic
curve (AUC) of 0.928 was reported.

In previous studies [15] our team computed kinematics features from gait signals cap-
tured with the eGait system [10] to evaluate the neurological state of the patients. A
Spearman’s correlation of up to 0.72 was reported between the MDS-UPDRS-III score of
the patients and the predicted values obtained with a Support Vector Regressor (SVR).

Recently in [16], the authors proposed new features to assess gait impairments of PD
patients. Those new features were the peak forward acceleration in the loading phase
and peak vertical acceleration around heel-strike, which encode the engagement in stride
initiation and the hardness of the impact at heel-strike, respectively. The results indicated
that the proposed features correlate with the disease progression and the loss of postural
agility/stability of the patients.

In [17] the authors aimed to detect freezing of gait (FoG) episodes in PD patients
using a deep learning approach. The authors collected data from 21 PD patients with FoG
using a waist-placed inertial sensor. The exercises performed by the participants included
free walking inside an apartment, walking ten meters outdoors, and rising from a chair.
The authors considered a six-layer one-dimensional convolutional neural network (CNN),
whose inputs were formed by spectral representations of consecutive time intervals. In
total, the input of the CNN consisted of 64 frequency bins obtained from 9 inertial sensors
(3-axis accelerometer, gyroscope and magnetometer). The author reported accuracies of
up to 90% when detecting FoG episodies.

Although most of the studies considered only kinematics, spectral, or statistical fea-
tures to assess gait impairments of PD patients, there are some studies that evaluated

Chapter 2 Paula Andrea Pérez Toro 3
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the non-linear effects of the walking process of PD patients. For instance, in [18], the
authors performed a combined analysis of spectral, statistical, kinematics, and NLD fea-
tures to characterize gait signals of 14 HC subjects, 10 PD patients and 11 patients with
peripheral neuropathy. The exercises consisted on 3 minutes of continuous walking on a
treadmill. The NLD features included the largest Lyapunov exponent (LLE), the Lempel
Ziv complexity (LZC), several entropy measures, and others. The extracted features were
compared the three groups using the Kruskal-Wallis and Mann-Whitney tests. Significant
differences were reported in features such as the LZC and the cross-entropy, which indi-
cates that it is possible to automatically disriminate between HC subjects and PD patients
using the feature set introduced by the authors.

In [19] the authors classified 13 PD patients, 13 Amyotrophic lateral sclerosis patients
and 13 Huntington patients and 13 HC subjects using data obtained from force-sensitive
resistors [12]. The authors computed NLD features such as the shannon entropy, the
recurrence rate, and recurrence quantification analysis (RQA). The classification was
performed with a support Vector Machine (SVM) and a Probabilistic Neural Network to
discriminate between patients with the different neuro-degenerative diseases and the
HC subjects. The classification followed a leave-one-out cross-validation strategy, which
could be slighly optimistic, and report accuracies close to 100%.

2.3 Contributions of this study

Non-linear Dynamics allows us to analyze problems at the physiological level, as in this
case people with Parkinson’s disease presents deficiencies in the motor system, it can
be to analyze fluctuations and changes in gait, trying to get closer the MDS-UPDRS-III
scale.

This study proposes the use of several NLD features to model the walking process of
PD patients and HC subjects. The features include correlation dimension (CD), LLE, Hurst
exponent (HE), LZC, and several entropy measures, which have proved to be accurate for
the NLD analysis of PD [18,20,21]. In addition, we propose a new set of NLD features to
model the dispersion of Poincaré sections using Gaussian mixture models (GMM), which
allow to represent the Poincare sections as a probability distribution.

The extracted features are used to discriminate between PD patients and HC subjects;
and to classify PD patients in several stages of the disease. The classification is per-
formed with three different algorithms: KNN, SVM and Random Forest (RF). Additionally,
we aim to predict the neurological state of the patient according to the MDS-UPDRS-III
score using an SVR. The algorithms were implemented in Matlab and Python. The re-
sults of the proposed approach indicate that it is possible to classify PD patients and HC
subjects with accuracies up to 86.7%, and to discriminate between PD patients in several
stages of the disease with accuracies up to 65.2%. To the best of our knowledge, this
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is one of the first studies that consider only NLD features and includes Poincaré maps
and their probabilistic representation (based on GMM-UBM) to characterize the walking
process of PD patients.

2.4 Hypothesis

Gait signals collected with inertial sensors help in the assessment of the neurological
state of patients with PD in different stages of the disease (low, intermediate, and severe).

2.5 Objectives

2.5.1 General Objective

To develop a methodology based on gait analysis and pattern recognition techniques, to
perform the automatic classification and evaluation of the neurological state of PD patients
according to the MDS-UPDRS-III scale [2].

2.5.2 Specific Objectives

1. To model several gait tasks performed by PD and HC subjects using different non-
linear dynamics features and probabilistic representations of Poincaré maps.

2. To analyze the suitability of different classification and regression methods to model
the neurological state of Parkinson’s disease patients.

3. To evaluate the developed methodology with several performance metrics.

2.6 Manuscript distribution

This work is divided into six chapters. Chapter one contains the context, state of the art
and the contribution of this study. Chapter two describes the measures obtained in the
feature extraction step. Chapter three contains the description of the pattern recognition
methods to perform the classification and regression. In Chapter four there is a description
of the database and the gait tasks. Chapter five includes experiments, results and the
discussion of each experiment. Finally, chapter six includes the main conclusions derived
from this study.
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Chapter 3

Feature extraction

3.1 Nonlinear dynamics.

3.1.1 Phase Space

The embedding process is the first step to reconstruct the state space based on a time
series. The most common method is based on the Taken’s Theorem [22], which gives the
conditions to reconstruct a chaotic dynamic system by means of a observation sequence
of the dynamic system state.

In order to analyze attractor properties, measured signals have to be projected onto a
suitable phase space. From a single time series St, a phase space can be constructed
as in Equation 3.1.

St =
{

[st, st−τ , ...st−(m−1)τ ]
}

(3.1)

Where i = 1, 2...Nm

St =



s1 s1−τ s1−2τ · · · s1−(m−2)τ s1−(m−1)τ

s2 s2−τ s2−2τ · · · s2−(m−2)τ s2−(m−1)τ

s3 s3−τ s3−2τ · · · s3−(m−2)τ s3−(m−1)τ
...

...
...

...
...

...
sNm−1 sNm−1−τ sNm−1−2τ · · · sNm−1−(m−2)τ sNm−1−(m−1)τ

sNm sNm−τ sNm−2τ · · · sNm−(m−2)τ sNm−(m−1)τ


(3.2)

Thus, a point in the reconstructed phase space is given by m “delay-coordinates” and
Nm = N − (m − 1)τ is the reconstructed vector length. The selection of the delay-time τ
and the embedding dimension m is somewhat arbitrary, but attractor dimensions should
not depend on τ and m.
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To compute these two embedding parameters (m and τ ), we need to consider the
following:

• Embedding dimension (m)

The embedding dimension is defined as the smallest dimension that requires an
object to be embedded. It means, it is the minimum dimension of the phase space
in which it will describe its behaviour. If the embedding dimension is higher the time
series representation will be influenced by noise, but in a smaller dimension the
phase space reconstruction do not reflect the original system dynamics [23].

To estimate the embedding dimension we used the method of the false neighbors,
which was proposed by M. Kennel [24].The idea is to search points of the data
set which are neighbors in an embedding space but not necessarily in the time
series [25].

The nearest neighbor to the vector St in the phase space is defined as in Equation
3.3.

SN
t =

{
[sNt , s

N
t−τ , ...s

N
t−(m−1)τ ]

}
(3.3)

And the distance between the vectors St and SN
t shown in Equation 3.4.

R2
mn

=

m0∑
i=0

(st−iτ − sNt−iτ )2 (3.4)

Then, the reconstructed phase space in m0 + 1:

R2
m+1t =

m0+1∑
i=0

(st−iτ − sNt−iτ )2 = R2
mn

+ (st−(m0+1)τ − sNt−(m0+1)τ )
2 (3.5)

It is considered a false neighbor when Rmt is smaller than Rm+1t and the embedding
dimension must be increased. To find a false neighbor, it is performed a comparison
with a threshold level (RNN) in Equation 3.6, where the embedding dimension is
right when the results tends to zero.√√√√R2

(m0+1)t
−R2

(m0)t

R2
(m0)t

≥ RNN (3.6)
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• Time delay (τ )

The Taken’s theorem does not provide enough information regarding the time delay
to complete the phase space reconstruction. The known methods to search this
value (τ )) are the first zero in the Auto Correlation Function (FZA) and mutual infor-
mation.
To estimate τ , and in general to reconstruct any attractor or any nonlinear dynamic
representation, we need quasi-periodic signals [26]. Speech signals which are not
quasi-periodic, are divided into small segments of duration between 40 to 100 mil-
liseconds [26]; however, gait signals are quasi-periodic signals and can be used as
they are.
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Figure 3.1: Phase space from gait signal produced by: A: YHC subject, B: EHC subject

Figures 3.1 and 3.2 show the phase space obtained from gait signals corresponding
to 20 meters walking with a stop at 10 meters from different subjects. Note that the phase
space for the HC subjects exhibit well defined trajectories and a clear recurrence. Con-
versely the trajectories of the phase space for the patients are more dispersed, especially
when the disease state of the patients is severe. Several NLD features can be computed
from the phase space to assess the complexity and stability of the walking process.
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Figure 3.2: Phase space from gait signal produced by: A: PD patient in low state of the
disease (MDS-UPDRS-III=6 for lower limbs), B: PD patient in intermediate state of the

disease (MDS-UPDRS-III=13 for lower limbs). C: PD patient in severe state of the
disease (MDS-UPDRS-III=34 for lower limbs)

3.1.2 Correlation Dimension (CD)

This feature establishes a measure over the exact space that is occupied by an attractor.
The computation of CD starts with the estimation of the correlation sum is a probability
function where the possible cases are the points that are contained in a hyper-sphere of
radius ε. This sum is defined for a set of points xn using Equation 3.7. This notion was
introduced by Grassberger & Procaccia [27].

C(ε) = lim
n→∞

1

N(N − 1)

N∑
i=1

N∑
j=i+1

θ(ε− |xi − xj|) (3.7)

Where θ is the Heaviside step function, C(ε) counts the distances between xi and xj
lower than the threshold ε, and N is the number of embedded points. For a small ε value,
it can be demonstrated as in Equation 3.8.

C(ε) = lim
ε→0

εCD (3.8)

Where CD is the correlation dimension. A good estimation of CD guarantees that the
embedded dimension is almost m = 2CD + 1.

To compute the CD, a linear regression of ln(C(ε)) vs. ln(ε) is performed. The slope
of the resultant line for a small ε value corresponds to CD [25] as in Equation 3.9.
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CD = lim
ε→0

ln(C(ε))

ln(ε)
(3.9)

3.1.3 Largest Lyapunov Exponent (LLE)

The Largest Lyapunov Exponent (LLE) measures the sensitivity to initial conditions of the
signal according to the rate at which the nearby trajectories of the phase space converge
or diverge. This feature gives information about stability properties of the time-series,
which implies that a small perturbation introduced to the system at any period, makes its
behavior unpredictable. There are as many Lyapunov exponents as the dimension of the
state space of the system. The exponent of interest for us in this work is the largest one.

LLE quantifies the exponential divergence of the neighbor paths in a phase space, i.e.
it measures the degree of aperiodicity in a given signal. The estimation of this process
begins with the reconstruction of the phase space using the Taken’s theorem [22].

After the reconstruction of the attractor, the nearest neighbor of each point in the
trajectory is located. The nearest neighbor xĵ minimizes the Euclidean distance from
the reference point xj according to Equation 3.10, where dj(0) is the initial divergence
between xj and xĵ , and || || is the Euclidean distance between two points.

dj(0) = min||xj − xĵ|| (3.10)

To guarantee different phase space trajectories between the neighbors paths, they
have to be separated a distance larger than the average period of the signal, as in Equa-
tion 3.11.

|j − ĵ| > Average period (3.11)

The LLE is estimated as the mean separation rate between the nearest neighbors,
according to the Oseledec theorem [28], which is expressed in Equation 3.12 assuming
that the j-th pair of neighbors diverges, where λ corresponds to the LLE, d(t) is the mean
divergence in an instant t and A is a constant for normalization.

dj(i) = Aje
λ(i∆t) (3.12)

When the logarithm function is evaluated in both sides of the previous equation we
can obtain the equation that represent parallel lines with slopes λ [23].

If λ < 0 the trajectories converge in time and the dynamic system is not sensitive to the
initial conditions. If λ is positive, the distances between neighbors trajectories will grow
exponentially in time and the system will show sensitive dependence to initial conditions.
λ = 0 indicates that the system exhibits Lyapunov stability [29].
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3.1.4 Hurst Exponent (HE)

Hurst exponent is used to evaluate the presence of the long-term dependency and its
degree in time series. The Hurst exponent is a smoothness measuring of a fractal time-
series based on asymptotics behavior of the rescaled range of the process and the fractal
dimension is defined as follows:

DF = DT −H (3.13)

Where DT is the topological dimension (two for temporal series) and H is the Hurst
exponent. This exponent also quantifies time series dynamic and allows to weigh until the
data points can be represented by a Brownian motion (The Brownian motion of a particle
is due to random collisions and allows modeling phenomena of diffusion and aggregation
in various disciplines. The derivative of Brownian noise is white noise).

• H = 0.5 the series behavior is like a Brownian motion.

• 0.5 < H < 1 the time serie has a smooth dynamic, that indicates that past tends
persists in the future.

• 0 < H < 0.5 the series is characterized to have higher high frequency content and
this reflects that past trends tend to be inverse in the future [30].

Hurst quantifies the chaotic dynamic of the system in analysis. The Hurst exponent is
calculated by the follow empirical relation:

TH =
R

S
(3.14)

Where T is the duration of the sample of data and R/S is the corresponding value
of rescaled range. H is estimated as the logarithmic representation slope as in Equa-
tion 3.15.

H =
logR/S

logT
(3.15)

3.1.5 Lempel Ziv complexity (LZ)

This feature is related to the number of different patterns of a given binary sequence.
It reflects the order that is retained in a one-dimensional temporal pattern or in a string
of n symbols. The algorithm is based on the original string reconstruction through copy
operations and symbols insertions in the new string. The time-series x(t) have to be
transformed into a symbolic sequence

Chapter 3 Paula Andrea Pérez Toro 11



Gait Assessment of Patients with Parkinson’s Disease using Inertial Sensors and
Non-Linear Dynamics Features

P =
{
s(1), s(2), ..., s(t)

}
to compute LZC. Related studies have shown that binary codifica-

tion is suitable for physiologic time-series [31,32]. To perform the codification is necessary
to define a threshold TH in Equation 3.16. LZC ranges from 0 (deterministic sequence)
to 1 (random sequence) [32].

s(t) =

{
0 if x(t) < TH
1 if x(t) > TH

(3.16)

With each new value the complexity counter c(n) is increased. This process has the
following steps [33]:

1. Definition:

• S,Q: sequences of P.

• SQ: concatenation of S and Q.

• SQπ: SQ sequence after remove the last character.

• v(SQπ): vocabulary that contains all different sequences of SQπ.

2. Variable initialization:

• c(t) = 1

• S = s(1)

• Q = s(2)

• SQπ = s(1)

3. Usually, S and Q are defined as S =
{
s(1), s(2), ..., s(r)

}
and Q = s(r + 1) respec-

tively, where r is the analyzed symbol index. Whether Q belongs to the dictionary
v(SQπ), with SQπ =

{
s(1), s(2), ..., s(r)

}
, so Q is a sub-sequence.

4. The sequence Q is updated Q =
{
s(r + 1), s(r + 2)

}
and is checked whether it

belongs to v(SQπ) or not.

5. The above steps are repeated until Q does not belong to v(SQπ), then just we can
know Q =

{
s(r + 1), s(r + 2), ..., s(r + i− 1)

}
is not a sub-sequence of SQπ and is

increased c(t).

6. The sequences S and Q are updated S =
{
s(1), s(2), ..., s(r + i)

}
and Q =

{
S(r + i+ 1)

}
.
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7. All of the above steps are repeated until the last character r = n. Now, it is applied
a normalization on the counter c(t) per t/(1− εt) logα(t) as in Equation 3.17, where
the number of different symbols in the symbol set is α and εt is a very small value.

c(t) <
t

(1− εt) logα(t)
(3.17)

Then

c(t) =
t

logα(t)
≡ b(t) (3.18)

And c(t) can be normalized that its objective is to obtain an independent complexity
value of time-series length as is shown in Equation 3.19.

C(t) <
c(t)

b(t)
(3.19)

3.1.6 Entropy measurements

Entropy is an uncertainty measurement, it quantifies the amount of the disorder of a sys-
tem. An important reason to extract a numeral value of the entropy from time series is
that its inverse is an important time scale for the prediction of a system. Unfortunately, to
extract entropies from time series is a difficult task because it is required more data points
than dimensions [25]. Then, based on the Kolmogorov-Sinai entropy an straightforward
implementation would require box counting. Kolgomorov-Sinai entropy is explained more
deeply in Appendice A.

Approximate entropy (ApEn)

Approximate entropy (ApEn) is a measure based on searching similar patterns into a
time-series. ApEn is computed as the logarithmic probability of data patterns to be close
to each other with longer patterns in the next comparison. ApEn provides a general
regularity measure, where in a random signal will have low regularity and thus producing
a higher ApEn value [34].

ApEn is typically applied to relatively short and noisy data. Two parameters, m and
r, need to be chosen before computing this entropy, where m is the pattern length and
r is the effective filter. In addition, after computing the correlation sum Ci defined by
Equation 3.7, where N is the number of points of the embedded time series. The ApEn is
computed according to the following procedure.

Chapter 3 Paula Andrea Pérez Toro 13
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• Cm
i (r) in Equation 3.20 is defined as relative frequency of similar patterns in a win-

dow of length m.

Cm
i (r) =

nim
N −m+ 1

(3.20)

• Then the logarithm of each Cm
i (r) is calculated and averaged over i, defining as a

result in Equation 3.21.

φm(r) =
1

N −m+ 1

N−m+1∑
i=1

logCm
i (r) (3.21)

• Let ApEn be the increment of φm(r) between two immediate steps of m (see Equa-
tion 3.22).

φm(r)− φm+1(r) (3.22)

Replacing expression 3.21 in 3.22, it is obtained Equation 3.23.

1

N −m+ 1

N−m+1∑
i=1

logCm
i (r)− 1

N − (m+ 1) + 1

N−(m+1)+1∑
i=1

logCm+1
i (r) (3.23)

Sample Entropy (SampEn)

The ApEn estimation may be affected by log(0) in the time-series. To avoid this, each
template vector counts itself in the comparisons. In addition, the ApEn is highly depen-
dent of the time-series length, making short time series have a lower estimation than
the expected, and also affecting the measure consistency. It means that if a data set
has a higher complexity than another one, it should continue to be for all the performed
tests [35].

The sample entropy was proposed by Richman et al [36] as a measure capable of
dealing with the problems of ApEn. SampEn is defined in Equation 3.24.

SampEn(m, r,N) = −log φm(r)

φm+1(r)
(3.24)

Wherem, r andN are defined as for the ApEn, φm(r) measures without self-comparisons
to avoid the occurrence of log(0) in the estimation.
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ApEn and SampEn with Gaussian kernel

Although the improvement offered by SampEn over ApEn, the validity and accuracy of the
estimated regularity is affected by the discontinuity of the Heaviside function. In [37], the
authors proposed a solution, which consists of replacing the Heaviside step function with
a Gaussian kernel in the estimation of the correlation sum Ci, which is estimated using
Equation 3.25 when the kernel is considered and where || ||1 is the L1 norm.

Cm
i (r) =

1

N −m

N−m+1∑
j=1,j 6=i

exp

(
−(||x(i), x(j)||1)2

10r2

)
(3.25)

Recurrence Probability Density Entropy (RPDE)

Another entropy measure considered to analyze chaotic and deterministic dynamic of gait
signals is the Recurrence Probability Density Entropy (RPDE), which is computed by the
close returns method [38]. Let’s assume there is a small sphere B(St0, r) with radius
r > 0, which is located close to the embedded point St0. The orbit continues in time going
like this St0+1, St0+2, St0+3. . . until it has left the small sphere, i.e. until |St0 − St0+j > r| for
a given j > 0. The difference between two time instants is the recurrence time T = t1− t0.
The recurrence time is computed for all embedded data points St, forming a histogram
of recurrence times R(T ), which is normalized to give the recurrence probability density
according to Equation 3.26.

RPDE = −R(t) · ln(R(t))

ln(Tmax)
(3.26)

Where Tmax is the maximum recurrence time, a fixed parameter which is chosen before
so that all recurrence time that was obtained empirically for the given finite length signal is
less or equal than this value. The chosen of r is important to get the properties of interest
because if the orbit is quasi-periodic, r has to be large enough to capture all recurrences,
but no so large to find recurrences that are due to noise or other external factors but not
because of the periodicity.

3.1.7 Detrended Fluctuation Analysis (DFA)

The Detrended Fluctuation Analysis (DFA) is a simple method to identify different stages
of the same system with different behaviour of the scale. The DFA algorithm is used to
estimate the stochastic component of the gait process. DFA searchs trends over intervals
of size L from the signal, which allow to obtain long-term dependencies of the time-series
and measures the RMS average deviation F (L) around the tend lines.

Chapter 3 Paula Andrea Pérez Toro 15
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The first step in this algorithm is the integration the signal by means of the sum in
Equation 3.27, where t = 0, 1, 2...N − 1 and N is the signal length St.

ut = −
n∑
i=1

Si (3.27)

Next step is the division of the resulting signal ut into non-overlaping intervals with
size L. For each interval the best adjustment of the straight trend line for ut is computed,
producing a signal with a piecewise linear trend for this interval size. We can denote this
as uLt . The fluctuation for this time scale is calculated by the Equation 3.28.

F (L) =

⌊
1

N

N−1∑
t=0

(ut − uLt )

⌋1/2

(3.28)

The final step is to fit a straight line α which depends on the points [logL, logF (L) over
all interval size L. The signal St represents a combination of deterministic and stochastic
dynamics, the deterministic part are dictated by the F function that will result in slow
changes of the signal over this relative time length scale. The stochastic fluctuations
in the signals indicate changes in the shorter time scale. Since the objective of DFA
is to analyze the signal stochastic properties, just a limit range of the intervals size is
investigated, where the signal stochastic component exhibit self-similarity indicated by a
straight line in the log-log graph of the interval length vs the fluctuation.

The resulting scaling exponent can assume any value in a real line. However, it will
be more convenient to represent it on a finite scale [0, 1], thus we need to find a mapping
function g : R → [0, 1]. One of these functions that find common use in patterns recog-
nition is the logistic function g(x) = (1 + exp(−x))−1, so the normalized scaling exponent
will be represented by the Equation 3.29.

αnorm =
1

1 + exp(−α)
(3.29)

We expected that the PD patients gait signals have αnorm value closer to 1 than healthy
people gait signals [39]. This is similar to the HE, except that DFA may be applied to time-
series whose underlying statistics are non-stationary. In addition, DFA allows to detect the
embedded intrinsic self-similarity in a non-stationary time-series and avoids the spurious
detection of the apparent self-similarity.

3.2 Poincare Sections.

A Poincaré section is the intersection of an orbit in the phase space of a continuous
dynamical system with an hyperplane transverse to the flow of the trajectory of the phase
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space. The Poincaré section is used to reduce the dimensionality of the phase space,
and to transform the continuous flow time into a discrete time map. The map iterations
are given by the point where the trajectory intersects the surface in a specific direction as
in Figure 3.3.

X�+1  

X�  

X�+2  

S

Figure 3.3: Poincaré Section of a surface

The discrete time of this map is the recount of intersections and commonly is not sim-
ply proportional to the original time of the flow. The time variation of a trajectory between
two successive intersection points, depends on the current path in the reconstructed state
space and on the chosen section surface. Each period leads at least to one point in the
Poincaré Section. Although it does not exist any general method to build the Poincaré
maps, they can capture all maximums or minimums in this phase space., so those maps
are suitable to study the dynamical range of a system.

Then, in the expansion of the reconstructed space by s(t), ṡ(t), s̈(t), ..., the intersec-
tions of the trajectory with the given surface by ṡ(t) = 0 are given by the maxima.
The maxima will be a special measure function, which is projected over the first compo-
nent of an applied vector to the state of vectors into this surface. The discrete period of
a periodic orbit of a corresponding Poi. Due to movement of the surface the number of
intersection points per trajectory can be reduced.

After the reconstruction of Poincaré sections, a clustering algorithm is performed to
model the maps in a probabilistic way. We consider a GMM to model the sections of the
map with the aim to extract features from the Gaussian clusters. Figures 3.4 and 3.5 show
examples of the Poincaré maps and clusters extracted with the GMM. Note that there are
differences in the maps obtained from the different subjects. The maps obtained for the
HC subjects in Figure 3.4 reflect more data concentration than PD patients maps. In PD
patients Poincaré maps in Figure 3.5 while the patient is more affected by the disease,
there are more dispersion in the data.
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Figure 3.4: Poincaré Sections from gait signal of A: Young Healthy Control, B: Elderly
Healthy Control
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Figure 3.5: Poincaré sections from gait signals produced by A: PD patient in low state of
the disease (MDS-UPDRS-III=6 for lower limbs), B: PD patient in intermediate state of
the disease (MDS-UPDRS-III=13 for lower limbs). C: PD patient in severe state of the

disease (MDS-UPDRS-III=34 for lower limbs)

3.2.1 Gaussian Mixture Model.

Gaussian Mixture Model can be seen as a clustering algorithm that implements the Ex-
pectation Maximization algorithm (EM) in Apendix B to find the mixture of Gaussian dis-
tributions that best model any dataset.

To find the initial values the GMM algorithm is initialized by means of the K-Means
algorithm. Then, it is assumed that each sample is generated by a probability distribution.
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The goal is to estimate the parameters µk (means), Σk (co-variances) and ω (weight of
the mixture) according to the maximum likelihood, computed according to Equation 3.30.

L(X|θ) =
n∏
t=1

K∑
k=1

ωkPk(xt|θk) (3.30)

Where K is the number of clusters in the Θ model, n is the number of observations
(feature vectors), xt is the t-th feature vector and Θk is the set of Gaussian parameters µk
and Σk. Pk is the probability density distribution, which is estimated using Equation 3.31,
where d is the number of features.

Pk(xt|θk) =
exp(1

2
(xt − µk)TΣ−1

k (xt − µk))√
(2π)dΣk

(3.31)

The means vector µk and the co-variances matrix Σk determine the centers and ge-
ometric characteristics of each Gaussian component. The following are the steps of this
algorithm:

1. The initialization of all Gaussian components is the first step for an EM algorithm,
initialized θk and all Gaussian components are assumed as equiprobable.

2. The posterior probability of the model is computed for each vector xt, according to
the Bayes theorem [40] as follows:

Pi(θk|xt) =
Pk(xt|θk)Pk(θk)∑K
k=1 Pk(xt|θk)Pk(θk)

(3.32)

3. Then, the weights of the Gaussian components are computed using Equation 3.33,
where N is the number of feature vectors.

Pk(θk) =
N∑
t=1

Pi(θk|xt)
N

(3.33)

4. When all weights are computed, µk and Σk are re-estimated:

µk =

∑N
t=1 Pt(θk|xt)xt∑N
t=1 Pi(θk|xt)

(3.34)

Σk =
N∑
t=1

(xt − µk)TPt(θk|xt)(xt − µk)∑N
t=1 Pi(θk|xt)

(3.35)
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Figure 3.6: Representation of the characteristics of a GMM

5. The procedure is repeated until it converges. The number of iterations depends on
the amount of the data.

In Figure 3.6 is shown the characteristics that compounds a Gaussian such as its
mean µ and the eigenvalues ( λ) and eigenvectors (u) of the covariance matrix µ. Σ can
be assumed as symmetric, the eigenvalues (λ) and eigenvectors (u) of the covariance
matrix µ in Equation 3.36.

Σui = λiui (3.36)

Then, expressing Σ in terms of its eigenvector, it takes the form defined in Equa-
tion 3.37, where D corresponds to the dimension.

Σ =
D∑
i=1

λiuiu
T
i (3.37)
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Chapter 4

Classification and regression methods

4.1 K-Nearest-Neighbors (KNN)

KNN algorithm [41] belongs to the family of lazy and competitive learning algorithms.
Lazy means that the algorithm does not make a model up to the moment that is required
the prediction. Competitive because it uses competition between data instances to per-
form a predictive decision. A new data x is classified using a majority vote among the
K instances, defining competencies as a distance measure d in Equation 4.1, and the
most likely class is assigned to the input between their K–neighbors as is shown in the
Figure 4.1.

d(x,x′) =
√

(x1 − x′1)2 + (x2 − x′2)2 + ...+ (xn − x′n)2 (4.1)

x

Figure 4.1: KNN selection representation with K=5
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KNN does not assume anything about the data, only that a distance measure can be
computed in a consistent way between two instances. Based on probability distribution,
given a positive integer k-nearest points, taking into account that k is usually odd to
avoid tie situations, a new data x and a likelihood measure d (distance), a KNN classifier
performs the following steps:

1. If we want to estimate a probability density, it is considered a small sphere centred
in x and a fixed value of k. An appropriate for the volume of the sphere (V ) has to
be defined. The distance between x and each training data point is computed.

2. The density is given by p(x) in Equation 4.2, where it has a data set with N obser-
vations. This is known as KNN method.

p(x) =
K

NV
(4.2)

3. To extend this into a classification problem, this density estimation method is applied
to each class separately and make use to the Bayes Theorem [40].

4. The conditional probability in Equation 4.3 is estimated for each class.

P (Y = j|X = x) =
1

k

∑
I(Y (i) = j) (4.3)

Where I(x) is the indicator function (class prior) to evaluate 1 when the argument is
true.

5. Finally, for the input x, the class with the highest probability is assigned.

In general, a large k value is more accurate, reducing general noise, but there is no
guarantee. The cross–validation is another way to determine retrospectively a good value
of k by means of using a independent data set to validate k.

4.2 Support Vector Machine.

The algorithm for linear SVM was proposed by Vapnik in [42]. The aim of this algorithm
is to find a hyperplane with maximum margin given a training set S of l training points as
follows:

S =
{
xi, yi

}
, i = 1, 2, ..., l (4.4)
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Where each point xi ε RN belongs to two different classes and a label is assigned
for each one yi; ε

{
−1, 1

}
. The decision function of the SVM is defined according to

Equation 4.5.

y(x) = ωTφ(x)− b (4.5)

Where ω is the perpendicular vector to the hyperplane and φ(x) denotes a fixed fea-
ture space transformation (kernel). If the SVM predicts that the positive class is given
when ω · x− b > 0 and the negative class by ω · x− b < 0 as is showed in the Figure 4.2.

wu
+b
=0

wu
+b
=1

wu
+b
=
1

Figure 4.2: Best fitting hyperplane for the example training set S

The distance between the feature vectors nearest to the hyperplane showed in the
Figure 4.2 is given by 2 ‖w‖ aiming to maximize the distance,‖w‖.

The optimal hyperplane can be found as a quadratic programming problem and it is
represented by the following equation:

arg min
ω,b

1

2
‖ω‖2 + C

l∑
i=1

ξi (4.6)

Where C is an adjustment parameter that compute the error between the separation
of the two classes and the training set.

∑l
i=1 ξi on the other hand, it is a miss-classification

errors measure referring to a set of slack variables. The slack variables denote by ξi ≥
0. When ξi = 0, it means that data points are inside of the correct margin boundary,
otherwise ξi = |ŷi − yi|. If a data point is on the decision boundary (yi = 0), ξi = 1 and
when ξi > 1 will be miss-classified. Then, the classification constrains will be replaced by
ŷiyi ≥ 1− ξi. The optimization problem solution it is shown in Appendix C.1.
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4.3 Random Forest (RF)

RF is a learning supervised algorithm used because its precision and its robustness
against noisy data. It can process a lot of inputs, without variables suppression and
also estimating the importance of the variables in the classification. It consists of a set of
classification trees from selected data samples of a randomly way, called ”forest”, where
each tree contributes with a single vote to the assignation of the most frequently class as
is shown in Figure 4.3. It uses a combination of features at each node to grow a tree,
instead using the best variables, which reduces the generalized error.

Instances

Tree-1 Tree-2 Tree-n

C1 C2 C1

Mayority Voting

Final Class

Figure 4.3: Architecture of the random forest model

To achieve the above is employed Bagging method to generate a training data–set by
means of re–sample of original data–set randomly. Each selected subset using Bagging
to perform each individual growing that contains a certain proportion of training data.

One of its advantages is that it does not suffer over-fitting problems, because RF take
the all prediction average, which cancels the biases. Also missing values can be treated,
either using the median of the values to replace the continuous variables or computing
the proximity weighted average of the missing values. The individual trees are generated
using an indicator of attribute selection being one of the most frequently used the Gini
Index [43] for each attribute or also known as ”the Total Decrease in Node Impurity”.
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Gini in Equation 4.7, measures the impurity of a given element with regard to the other
classes, obtaining the relative importance of the feature. The more it decreases, the
more significant is the feature, being the mean decreasing an important parameter to the
feature selection. Thus, using a given combination of features is made to grow up until
their maximum depth. ∑∑

j 6=i

(f (Ci,T )/|T |)(f (Cj,T )/|T |) (4.7)

Where T is the given training set, Ci is the class and f (Ci,T )/|T | is the probability that
the selected case belongs to Ci.

The RF algorithm is performed by the following steps:

1. It is selected randomly samples from the dataset, draw n-trees of these samples.

2. It is building a decision tree for each sample and it is obtained a prediction from
every decision tree. For the sample grows a classification tree in which the features
form each node.

3. Each tree will grow to its maximum extension without pruning.

4. It is selected the final result by majority vote of each one of performed prediction.

4.4 Support Vector Regression.

The Support Vector Regression (SVR) is an extension of SVM algorithm to regression.
To this method instead a regularization error function for a loss function (ε-insensitive)
defined as Lε(y, ŷ) of width 2ε. This loss function (see Figure 4.4) ensures the existence
of a global optimum, having associated a linear cost with errors out of the ε-insensitive
region given by:

Lε(y, ŷ) =

{
0 if |y − ŷ| < ε
|y − ŷ| − ε otherwise

(4.8)

The ε-insensitive penalizes the model if there are differences between the training set
and model predictions. The feature vectors x are mapped in a m-dimensional space using
a lineal kernel, where y is shown in Equation 4.5. Now the minimization is given by:

C

N∑
n=1

Lε(yn − ŷn) +
1

2
||w||2 (4.9)

Where C is the regularization parameter and w establishes the each support vector
weight.
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Figure 4.4: Loss Function

To the optimization problem is introduced the slack variables. For each point is nec-
essary two slack variables, ξ̂ ≥ 0 and ξ ≥ 0. A point lies inside the ε-insensitive region
(shows in Figure 4.5) when yn − ε ≤ ŷn ≤ yn + ε. Then, when if it is introducing the
slack variables this allows that some points lie outside of the above mentioned region,
corresponding in two following conditions:

ŷn ≤ yn + ε+ ξn (4.10)

ŷn ≥ yn − ε− ξ̂n (4.11)

Then, according to the above, the error function is re-writing as in Equation 4.12,
but this expression must be minimized subject to a certain constraints (slack variables)
showed in the conditions 4.10 and 4.11. This is achieved by the Lagrange multipliers and
optimizing the Lagrangian. The optimization problem solution it is shown in Appendix C.1.

C

N∑
n=1

(ξn + ξ̂n) +
1

2
||w||2 (4.12)

4.5 Cross Validation

Its procedure is based on in the generation of K-folds of given data set groups. It is
often used in machine learning to estimate the capability of the model on unseen data.
Besides, is less optimistic than other common methods. Before to define the algorithm, it
is important specify the K-splits number, in according to:
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Figure 4.5: Ilustration of One-dimensional linear regression with the ε-insensitive ”tube”

• The data is divided into k subsets.

• Leave-One-Out is when the K is equal to the data set length, where each test sample
participates on the hold out data set.

To this application was chosen the division into k subsets. To perform it, is suggest the
following steps:

1. Usually, the data set is shuffle randomly, but in this case the characteristics of the
population are known allowing to balance each K–fold taking half of HC subjects
(balance per gender) and half of PD patients (balanced across the stage of the
disease).

2. The data set is split in K-folds, in this case K=5 taking into account that the data set
length is 90.

3. It is chosen K-1 folds to train and to validate data set.

4. One fold is to test. This folds are not in the set of the last step.

5. Then, the model is trained and evaluated with the testing set.

6. The procedure is repeated for k times.

Chapter 4 Paula Andrea Pérez Toro 27
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4.6 Performance metrics

A performance metric is a regular measurement of outcomes and results, is defined as a
process that quantifies the effectiveness and efficiency of past actions [44].

To evaluate results of Machine Learning experiments several metrics will perform. This
metrics are related to the measure of effectiveness, efficiency or correlation [45].

To understand the following metrics, it is defined some concepts:

• True positive (TP): the number of cases correctly identified as PD patient.

• True negative (TN): the number of cases correctly identified as healthy control.

• False positive (FP): the number of cases incorrectly identified as PD patient.

• False negative (FN): the number of cases incorrectly identified as healthy control.

Confusion Matrix

The confusion matrix allows the visualization of the algorithm performance of a super-
vised learning. The number of class predictions are represented by columns, while the
instances of the real classes are representing by rows. As shown in table 4.1.

Table 4.1: Confusion matrix structure

Actual Class
TP FNPredicted

Class FP TN

Accuracy

The accuracy in Equation 4.13 is the ability to discriminate patients and healthy cases
correctly. To compute it, is estimated the proportion of true positive and true negative in
all evaluated cases.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.13)
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Sensitivity

The sensitivity in Equation 4.14, is the ability to discriminate patients correctly. To compute
it, it is estimated the proportion of true positive in patient cases.

Sensitivity =
TP

TP + FN
(4.14)

Specificity

The specificity in equation4.15, is the ability to discriminate healthy controls correctly. To
compute it, it was estimated the proportion of true negative in healthy control cases.

Specificity =
TN

TN + FP
(4.15)

Receiver Operating Characteristic curve (ROC)

The ROC curve is a graphical representation which shows the binary classifier perfor-
mance, while its discrimination threshold is varied.

Where y-label is the True positives (Sensitivity) and x-label is The False positives (1−
Specificity).

Cohen’s Kappa

Cohen’s Kappa (κ) in Equation 4.16 is frequently used to test the interrater reliability.
It is similar to the correlation coefficients ranging between –1 to 1 but it measures the
degree of agreement that can be attributed to chance. It has to take into account that this
measures only is used between two raters.

κ =
po − pε
1− pε

(4.16)

Where po is the empirical probability of agreement on the label assigned to any sample
and pε is the expected agreement when both raters assign labels randomly. κ can be
interpreted as following [46]:

• Values ≤ 0 no agreement.

• 0.01− 0.20 none to slight.

• 0.41− 0.60 moderate.

• 0.61− 0.80 substantial.
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• 0.81− 1.00 almost perfect agreement.

Spearman’s Correlation

Spearman’s is a correlation metric that measures the strength of the relationship between
two variables. It has the following characteristics:

• Its value ranges from -1 to 1.

• The Spearman’s correlation advantage over Pearson correlation is that Spearman
leaves to find out nonlinear correlations between variables.

As following, this correlation is define:

ρ = 1− 6
∑
D2

N(N2 − 1)
(4.17)

Where D is the difference between the statistics corresponding and N is the number
of data couples.
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Chapter 5

Database and tasks

Gait signals were captured with the eGaIT system1, which consists of a 3D-accelerometer
(range ±6g) and a 3D gyroscope (range ±500◦/s) attached to the lateral heel of the
shoes [9]. Figure 5.1 shows the eGait system and the inertial sensor attached to the
lateral heel of the shoe. The signals are transmitted by bluetooth to a tablet where they
are received by an android app.

Data from both foot were captured with a sampling rate of 102.4 Hz and 12-bit reso-
lution. The tasks performed by the patients include 20 meters walking with a stop at 10
meters (Two times 10 m walk, 2x10m), and 40 meters walking with a stop every 10 meters
(Four times 10 m walk, 4x10m).

A B

Figure 5.1: Interface eGaiT and shoe with its attached inertial sensor.

Data are obtained from 45 PD patients and 89 HC subjects. The HC subjects were
divided into two groups: the first one formed with 44 YHC (Young Healthy Controls),
and the second one with 45 EHC (Elderly Healthy Controls) subjects. The patients were

1Embedded Gait analysis using Intelligent Technology, http://www.egait.de/
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evaluated by an expert neurologist and labeled according to the MDS-UPDRS-III score.
Table 5.1 shows additional information of the participants of this study.

Table 5.1: General information of the subjects. PD patients: Parkinson’s disease
patients. HC: healthy controls. LL:Lower limbs sub-score. µ: average. σ: standard

deviation. T: disease duration.

PD patients YHC subjects EHC subjects
male female male female male female

Number of subjects 17 28 26 18 23 22
Age ( µ± σ ) 65 ± 10.3 58.9 ± 11.0 25.3 ± 4.8 22.8 ± 3.0 66.3 ± 11.5 59.0 ± 9.8
Range of age 41–82 29–75 21–42 19–32 49–84 50-74
T ( µ± σ ) 9 ± 4.6 12.6 ± 12.2
Range of duration of the disease 2–15 0–44
MDS-UPDRS-III ( µ± σ ) 37.6 ± 21.0 33 ± 20.3
Range of MDS-UPDRS-III 8–82 9–106
Range of MDS-UPDRS-III-LL 3–41 0–50

Chapter 5 Paula Andrea Pérez Toro 32
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Experiments and results

6.1 Feature extraction

The above features were extracted from over the entire gait signal. Table 6.1 shows the
number of computed features for each task performed by the patients. Ten NLD and ten
Poincaré features are extracted, which are computed for each of the six signals from the
inertial sensors, forming the feature matrix used to classify PD patients and HC subjects.

Table 6.1: Number of features per task

Foot Task Number
of axes

Number of features TotalNLD Poincare
Left 2x10m 6 10 10 120
Left 4x10m 6 10 10 120
Left Fusion 6 20 20 240

Right 2x10m 6 10 10 120
Right 4x10m 6 10 10 120
Right Fusion 6 20 20 240
Both 2x10m 12 10 10 240
Both 4x10m 12 10 10 240
Both Fusion 12 20 20 480

Three experiments were performed: (1) classification of PD patients and HC subjects,
(2) prediction of the neurological state of the patients according to the MDS-UPDRS-III
sub-score for lower limbs, and (3) the classification of PD patients in different stages of
the disease. Three sets of features were considered in each experiment: (1) The NLD
and entropy features, described in Section 3.1, (2) the features extracted from Poincaré
sections using the GMM approach, described in Section 3.2, and (3) the combination of
both feature sets.
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For all experiments, we followed a 5-fold cross-validation strategy, where 3 folds were
used for training, one to optimize the hyper-parameters of the classifiers, i.e., development
set, and one for test. The parameters were optimized in a grid search over the train folds.
For the case of KNN, we optimize the number of neighbors K ∈ {3, 5, · · · , 11}. For the
SVM, we optimize the complexity parameter C ∈ {10−4, 10−3, · · · 104} and the bandwidth
of the kernel γ ∈ {10−4, 10−3, · · · , 104}. For the RF, we optimize the number of trees N ∈
{5, 10, 20, 30, 50, 100} and the maximum depth of the trees D ∈ {2, 5, 10, 20, 30, 50, 100}. A
similar approach is performed with the SVR for the regression experiment. In this case
we optimize the complexity parameter C ∈ {10−6, 10−5, · · · , 104} and the insensitive pa-
rameter ε ∈ {0.0001, 0.001, 0.01, 1, 10, 50, 100}. The performance of the regression method
is obtained with the Spearman’s correlation coefficient ρ.

6.2 Classification of PD patients and HC subjects

Two experiments are performed: (1) classification of PD vs. YHC , and (2) classification
of PD vs. EHC. Individual experiments are performed per foot and per task. In addition,
the features computed from the two tasks and the two feet are combined.Three different
cases are considered depending on the feature set: (1) NLD and entropy features, (2) the
features extracted from Poincaré sections and GMMs, and (3) the combination of both
feature sets. The results obtained for these feature sets are shown in Tables 6.2 to 6.7.
Also, individual experiments are performed per foot and per task, and the combination of
features is performed via early fusion.

Table 6.2 shows the results for the PD vs. YHC subjects. In general the best results
are obtained with the RF classifier. The fusion of features from both feet and the two tasks
also provides the highest accuracy (93.3%±7.2).

Although the highest accuracies were obtained in experiments classifying PD vs. YHC
subjects with NLD and entropy features, it does not consider the effect of age in the
walking process. The results classifying PD patients vs. EHC subjects with similar age to
the patients for NLD and entropy features are shown in Table 6.3. Note that the results are
slightly lower than those obtained in the previous experiment. Although such an impact,
relatively high accuracies are obtained, specially when we combine the features from both
tasks and both feet. For the separate classification using features computed from each
foot, the highest accuracies were obtained for the left foot, which may indicate that the left
lower limbs are more affected due to the disease, having in mind that most of the patients
are right dominant foot. This fact is known as cross laterality [47].

Table 6.3 shows relatively high accuracies, especially when we combined the features
from both tasks and both feet (85.6% obtained with the RF classifier). The results also
show that the specificity (91.1% for the RF classifier when the features are combined) is
higher than sensitivity (80.0% in the same scenario), which indicates that our system is
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Table 6.2: Results of NLD features to classify PD patients vs. YHC subjects. ACC:
accuracy in the test set. µ: average. σ: standard deviation. Sen: Sensibility. Spe:

Specficity. AUC: Area under ROC curve. K: number of neighbors in the KNN. C and γ:
complexity parameter and bandwidth of the kernel in the SVM, N and D: Number of

trees and depth of the decision trees in the RF.

KNN SVM RF

Foot Task ACC(%)
(µ± σ) Sen(%)/Spe(%) AUC K ACC(%) Sen(%)/Spe(%) AUC C γ ACC(%) Sen(%)/Spe(%) AUC N D

Left 2x10 85.4±6.4 75.6/95.3 0.91 5 82.0±5.0 75.6/88.6 0.92 101 10−3 86.5±7.6 80.0/93.3 0.92 20 20
Left 4x10 84.4±8.1 73.3/95.6 0.95 9 91.1±6.3 86.7/95.6 0.96 100 10−3 93.3±7.2 93.3/93.3 0.94 30 20
Left Fusion 88.8±3.8 77.8/100.0 0.94 5 88.9±8.8 82.2/95.6 0.94 101 10−3 91.1±7.4 86.7/95.6 0.95 20 100

Right 2x10 85.5±4.8 71.1/100.0 0.88 9 79.9±8.3 77.8/81.9 0.91 101 10−3 82.0±4.6 77.8/86.1 0.92 10 5
Right 4x10 78.8±9.0 60.0/97.8 0.90 7 92.2±4.9 84.4/100.0 0.92 101 10−3 86.6±6.2 84.4/88.9 0.95 10 100
Right Fusion 82.1±9.0 68.9/95.6 0.91 7 88.8±4.9 80.0/61.8 0.93 101 10−3 89.9±6.2 84.4/95.6 0.95 50 5
Both 2x10 86.7±5.0 73.3/97.8 0.93 7 83.2±6.7 80.0/86.7 0.94 101 10−3 85.5±11.5 80.0/91.1 0.92 5 2
Both 4x10 84.2±10.7 71.1/97.8 0.93 5 86.6±4.8 80.0/93.3 0.90 100 10−3 92.2±6.3 88.9/95.6 0.94 20 2
Both Fusion 86.5±2.9 73.3/100.0 0.93 5 91.0±4.9 84.4/97.8 0.96 100 10−3 91.1±4.9 84.4/97.8 0.96 30 10

Average 84.7 71.6/97.7 0.92 – 87.1 81.2/89.0 0.93 – – 88.7 84.4/92.9 0.94 – –
STD 2.7 5.1/2.0 0.0 – 4.2 3.5/11.6 0.0 – – 3.5 4.8/3.7 0.0 – –

Table 6.3: Results of NLD features to classify PD patients vs. EHC subjects.ACC:
accuracy in the test set. µ: average. σ: standard deviation. Sen: Sensibility. Spe:

Specficity. AUC: Area under ROC curve. K: number of neighbors in the KNN. C and γ:
complexity parameter and bandwidth of the kernel in the SVM, N and D: Number of

trees and depth of the decision trees in the RF.

KNN SVM RF
Foot Task ACC(%) Sen(%)/Spe(%) AUC K ACC(%) Sen(%)/Spe(%) AUC C γ ACC(%) Sen(%)/Spe(%) AUC N D
Left 2x10 81.1±9.3 80.0/82.2 0.84 5 77.78±13.0 66.7/88.9 0.74 10−4 10−4 83.3±14.2 73.3/93.3 0.89 30 2
Left 4x10 72.2±11.1 68.9/75.6 0.80 5 81.11±12.8 86.7/75.6 0.90 100 10−3 84.4±7.2 82.2/86.7 0.89 10 5
Left Fusion 80.0±8.4 73.3/86.7 0.86 5 83.33±6.8 82.2/84.4 0.84 10−4 10−4 83.3±8.8 77.8/88.9 0.89 30 30

Right 2x10 70.0±9.3 60.0/80.0 0.82 5 67.78±7.2 51.1/84.4 0.73 10−4 10−4 78.9±6.1 73.3/84.4 0.79 10 2
Right 4x10 77.8±6.8 73.3/82.2 0.82 3 76.67±7.2 73.3/80.0 0.83 101 10−3 80.0±11.5 80.0/80.0 0.87 20 2
Right Fusion 81.1±8.4 73.3/88.9 0.85 3 82.22±4.6 75.6/88.9 0.87 101 10−3 85.6±6.3 82.2/88.9 0.91 20 5
Both 2x10 76.7±12.7 68.9/84.4 0.79 5 80.00±8.4 68.9/91.1 0.85 101 10−4 78.9±11.4 71.1/86.7 0.86 30 50
Both 4x10 72.2±3.9 75.6/68.9 0.80 3 81.11±6.3 77.8/84.4 0.83 10−4 10−4 82.2±12.7 82.2/82.2 0.91 100 50
Both Fusion 85.6±5.0 77.8/93.3 0.89 3 82.22±4.6 71.1/93.3 0.86 10−4 10−4 85.6±2.5 80.0/91.1 0.91 30 30

Average 77.4 72.3/82.5 0.83 – 79.1 72.6/85.7 0.83 – – 82.3 78.0/86.9 0.88 – –
STD 4.8 5.8/7.2 0.0 – 4.5 10.3/5.6 0.1 – – 2.4 4.4/4.2 0.0 – –

more accurate to detect correctly the EHC subjects.
Table 6.4 shows the results of Poincaré features for the PD vs YHC classification. This

time applying Poincaré features the results are worsened in comparison with NLD fea-
tures. While PD vs EHC (see Table 6.5) obtained similar results respect to NLD features,
where the fusion of features from both feet and two tasks provided higher accuracies in
the RF classifier (85.6% and 86.7%).

In comparison to the results from the set of NLD Features from Table 6.3, a higher
accuracy was obtained with the Poincaré features in Table 6.5. The Poincaré features
keep the premise that the fusion of both feet and tasks are more effective to discrimi-
nate between PD patients and HC subjects. Although the accuracy obtained with the
Poincaré features seems to be reduced compared to the reported with the NLD and en-
tropy features (especially for the KNN and SVM classifiers), note that the highest accuracy
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Table 6.4: Results of Poincare Features to classify PD patients vs. YHC subjects. ACC:
accuracy in the test set. µ: average. σ: standard deviation. Sen: Sensibility. Spe:

Specficity. AUC: Area under ROC curve. K: number of neighbors in the KNN. C and γ:
complexity parameter and bandwidth of the kernel in the SVM, N and D: Number of

trees and depth of the decision trees in the RF.

KNN SVM RF

Foot Task ACC(%)
(µ± σ) Sen(%)/Spe(%) AUC K ACC(%)

(µ± σ) Sen(%)/Spe(%) AUC C γ
ACC(%)
(µ± σ) Sen(%)/Spe(%) AUC N D

Left 2x10 51.8±10.5 35.4/68.1 0.56 3 64.3±12.4 63.6/65.0 0.74 101 10−3 64.1±17.7 52.1/76.1 0.70 10 5
Left 4x10 47.1±12.7 17.5/76.7 0.49 5 50.7±12.7 38.6/62.8 0.54 102 10−4 61.6±17.9 51.1/72.0 0.66 30 2
Left Fusion 47.7±13.6 25.7/69.7 0.53 7 52.7±19.2 33.6/71.7 0.58 102 10−4 59.2±17.9 48.6/69.7 0.66 20 20

Right 2x10 54.8±8.3 38.9/70.6 0.57 5 64.1±16.9 49.3/78.9 0.73 101 10−3 65.0±20.8 58.6/71.4 0.73 100 2
Right 4x10 62.3±8.9 56.8/67.8 0.67 5 56.6±8.8 38.9/74.2 0.61 101 10−3 72.5±11.5 66.4/78.6 0.81 10 50
Right Fusion 62.9±6.9 48.9/76.9 0.68 7 58.1±9.9 46.4/69.7 0.68 101 10−3 66.7±16.4 66.1/67.2 0.74 30 5
Both 2x10 53.2±6.6 33.6/72.8 0.59 5 65.9±11.3 66.8/65.0 0.69 102 10−4 70.1±17.3 61.8/78.3 0.74 100 2
Both 4x10 57.7±11.3 41.1/74.2 0.58 7 60.2±12.4 64.3/56.1 0.69 102 10−3 65.4±11.9 61.4/69.4 0.72 5 20
Both Fusion 58.1±10.8 26.1/90.1 0.54 7 61.8±16.8 51.4/72.2 0.69 101 10−4 71.0±14.4 66.1/75.8 0.79 50 5

Average 55.1 36.0/74.1 0.58 – 59.4 50.3/68.4 0.66 – – 66.2 59.1/73.2 0.73 – –
STD 5.7 12.1/6.8 0.1 – 5.3 12.2/6.8 0,1 – – 4.4 7.0/4.1 0,0 – –

Table 6.5: Results of Poincaré features to classify PD patients vs. EHC subjects. ACC:
accuracy in the test set. µ: average. σ: standard deviation. Sen: Sensibility. Spe:

Specficity. AUC: Area under ROC curve. K: number of neighbors in the KNN. C and γ:
complexity parameter and bandwidth of the kernel in the SVM, N and D: Number of

trees and depth of the decision trees in the RF.

KNN SVM RF

Foot Task ACC(%)
(µ± σ) Sen(%)/Spe(%) AUC K ACC(%)

(µ± σ) Sen(%)/Spe(%) AUC C γ
ACC(%)
(µ± σ) Sen(%)/Spe(%) AUC N D

Left 2x10 67.8±4.1 53.3/82.2 0.70 3 68.9±8.3 64.4/73.3 0.74 101 10−4 77.8±6.1 77.8/77.8 0.85 30 5
Left 4x10 62.2±10.7 46.7/77.8 0.65 5 72.2±3.5 73.3/71.1 0.81 102 10−4 72.2±10.5 71.1/73.3 0.77 100 10
Left Fusion 57.8±9.0 37.8/77.8 0.66 5 57.8±4.4 53.3/62.2 0.63 10−4 10−4 75.6±12.4 75.6/75.6 0.85 20 30

Right 2x10 61.1±11.6 44.4/77.8 0.68 9 81.1±7.5 77.8/84.4 0.86 102 10−3 85.6±5.6 77.8/93.3 0.87 30 50
Right 4x10 54.4±9.5 42.2/66.7 0.61 5 72.2±9.9 71.1/73.3 0.80 101 10−3 71.1±8.1 68.9/73.3 0.79 50 5
Right Fusion 57.8±9.0 35.6/80.0 0.66 3 72.2±14.4 71.1/73.3 0.80 102 10−4 82.2±8.8 82.2/82.2 0.86 100 10
Both 2x10 61.1±6.1 37.8/84.4 0.70 3 77.8±7.0 77.8/77.8 0.87 101 10−3 82.2±2.2 82.2/82.2 0.90 100 20
Both 4x10 63.3±7.5 46.7/80.0 0.71 7 73.3±6.4 73.3/73.3 0.80 102 10−3 76.7±6.5 75.6/77.8 0.84 20 30
Both Fusion 65.6±8.2 35.6/95.6 0.71 3 81.1±5.7 75.6/86.7 0.87 101 10−3 86.7±2.7 80.0/93.3 0.91 50 5

Average 61.2 42.2/82.3 0.70 – 73.0 70.8/75.0 0.80 – – 78.9 76.8/81.0 0.80 – –
STD 4.2 6.1/7.6 0,0 – 7.1 7.7/7.2 0,1 – – 5.6 4.6/7.7 0,0 – –

improved in up to 1.1% the highest one obtained with the NLD and entropy features.
The performance of PD vs YHC classification added Poincaré features (see Table 6.4

and 6.6) decreased in comparison with only NLD features (see Table 6.2). Results for
the combination of NLD, entropy, and Poincaré features (see Table 6.6) show that the
highest accuracy was obtained with the SVM classifier (86.7%). This result was similar to
those obtained only with the Poincaré features; however, the feature combination provides
more stable results in terms of the specificity and sensitivity. Note also the presence of
the cross-laterality effect in the results, i.e., the highest accuracies are obtained with the
features computed from the left foot.

Figures 6.1 to 6.9 show an additional comparison among the best results obtained in
the classification of PD patients vs. the two groups of HC subjects. The ROC curves
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Table 6.6: Results of NLD+Poincaré features to classify PD patients vs. YHC subjects.
ACC: accuracy in the test set. µ: average. σ: standard deviation. Sen: Sensibility. Spe:
Specficity. AUC: Area under ROC curve. K: number of neighbors in the KNN. C and γ:

complexity parameter and bandwidth of the kernel in the SVM, N and D: Number of
trees and depth of the decision trees in the RF.

KNN SVM RF

Foot Task ACC(%)
(µ± σ) Sen(%)/Spe(%) AUC K ACC(%)

(µ± σ) Sen(%)/Spe(%) AUC C γ
ACC(%)
(µ± σ) Sen(%)/Spe(%) AUC N D

Left 2x10 64.0±8.8 56.1/71.9 0.72 5 74.4±13.5 74.3/74.4 0.81 102 10−4 76.1±12.3 71.4/80.8 0.83 100 30
Left 4x10 60.6±10.1 38.1/83.1 0.72 5 72.9±17.8 71.8/73.9 0.76 101 10−4 78.7±11.3 76.8/80.6 0.82 100 5
Left Fusion 70.7±17.8 56.1/85.3 0.84 5 77.9±16.1 81.8/73.9 0.81 101 10−4 72.6±17.4 66.8/78.3 0.81 30 10

Right 2x10 53.8±10.7 33.2/74.4 0.67 7 71.8±14.4 71.8/71.7 0.74 101 10−4 69.9±20.2 61.5/78.3 0.78 50 5
Right 4x10 65.0±13.4 44.3/85.6 0.78 7 72.6±10.4 66.8/78.3 0.77 101 10−4 74.9±13.5 68.9/80.8 0.79 20 5
Right Fusion 68.4±12.9 49.3/87.5 0.77 7 78.6±8.1 74.3/82.8 0.81 101 10−4 78.6±9.2 74.3/82.8 0.81 100 5
Both 2x10 65.8±9.0 50.7/80.8 0.75 3 71.5±8.9 66.8/76.1 0.81 101 10−4 73.4±18.5 63.9/82.8 0.82 10 5
Both 4x10 61.1±13.4 36.8/85.3 0.79 7 72.9±18.9 71.8/73.9 0.82 100 10−3 75.8±18.1 79.3/78.3 0.82 100 2
Both Fusion 68.2±12.9 48.9/87.5 0.84 7 79.8±9.2 76.8/82.8 0.82 100 10−3 76.2±14.1 71.8/80.6 0.82 50 50

Average 64.2 45.9/82.4 0.76 – 74.7 72.9/76.4 0.79 – – 75.1 69.9/80.4 0.81 – –
STD 5.1 5.6/5.6 0.0 – 3.2 4.7/4.0 0.0 – – 2.8 5.0/1.8 0.0 – –

Table 6.7: Results of NLD+Poincaré features to classify PD patients vs. EHC subjects.
ACC: accuracy in the test set. µ: average. σ: standard deviation. Sen: Sensibility. Spe:
Specficity. AUC: Area under ROC curve. K: number of neighbors in the KNN. C and γ:

complexity parameter and bandwidth of the kernel in the SVM, N and D: Number of
trees and depth of the decision trees in the RF.

KNN SVM RF

Foot Task ACC(%)
(µ± σ) Sen(%)/Spe(%) AUC K ACC(%)

(µ± σ) Sen(%)/Spe(%) AUC C γ
ACC(%)
(µ± σ) Sen(%)/Spe(%) AUC N D

Left 2x10 77.8±11.6 66.7/88.9 0.85 9 80.0±6.7 73.3/86.7 0.82 101 10−3 82.2±9.5 80.0/84.4 0.88 30 10
Left 4x10 78.9±7.3 66.7/91.1 0.86 3 82.2±4.1 82.2/82.2 0.89 10−4 10−4 84.4±8.1 77.8/91.1 0.90 100 2
Left Fusion 83.3±6.0 73.3/93.3 0.91 5 86.7±8.3 88.9/84.4 0.91 10−4 10−3 85.6±9.0 73.3/97.8 0.93 5 5

Right 2x10 67.8±4.1 40.0/95.6 0.75 9 80.0±7.5 68.9/91.1 0.86 101 10−3 77.8±3.5 68.9/86.7 0.85 30 10
Right 4x10 78.9±4.1 73.3/84.4 0.84 3 78.9±9.5 77.8/80.0 0.76 10−4 10−4 77.8±15.3 84.4/71.1 0.81 20 2
Right Fusion 75.6±7.5 60.0/91.1 0.82 5 76.7±7.4 71.1/82.2 0.81 10−4 10−4 82.2±4.1 80.0/84.4 0.88 100 10
Both 2x10 74.4±7.5 53.3/95.6 0.84 7 78.9±4.1 71.1/86.7 0.83 100 10−4 85.6±4.4 80.0/91.1 0.92 10 50
Both 4x10 76.7±7.3 64.4/88.9 0.87 5 81.1±7.5 84.4/77.8 0.82 10−4 10−3 80.0±5.7 75.6/84.4 0.88 10 2
Both Fusion 77.8±6.1 57.8/97.8 0.89 5 83.3±7.9 82.2/84.4 0.91 10−4 10−3 84.4±5.4 82.2/86.7 0.90 20 30

Average 76.8 61.7/90.0 0.8 – 80.9 77.8/83.9 0.8 – – 82.2 78.0/86.4 0.9 – –
STD 4.2 10.5/5.1 0,0 – 2.9 7.0/4.0 0,1 – – 3.1 4.8/7.2 0,0 – –

represent the results in a more compact way and it is a standard measure of performance
in medical applications. The three classifiers produce similar results for both experiments.
The impact of age in the results is also observed.

In addition, Figures 6.2 to 6.4 (for NLD), 6.6 to 6.8 (for Poincaré) and 6.10 to 6.12
(for NLD+Poincaré) show the scores of each classifier. In KNN and RF, the score is the
probability with which sample belongs to the selected class and in SVM is the distance of
the hyperplane to the sample.

According to KNN scores (see Figure 6.2) in NLD and entropy features, most of the
YHC subjects were accurately classified but it is affected by the age factor. Figure 6.3
illustrates the distances between PD patients and EHC subjects according to their rep-
resentation in the classification hyperspace, i.e., according to their distance to the hyper-
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Figure 6.1: ROC curve graphics of the best NLD Features results. A) PD vs YHC. B) PD
vs EHC. In both cases the fusion of features from both feet and both tasks are

considered.
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Figure 6.2: KNN Scores of NLD Features: A) PD vs YHC Fusion Both Feet task. B) PD
vs EHC Fusion Both Feet task.
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Figure 6.3: SVM Scores of NLD Features: A) PD vs YHC Fusion Both Feet task. B) PD
vs EHC Fusion Both Feet task.
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Figure 6.4: RF Scores of NLD Features: A) PD vs YHC Fusion Both Feet task. B) PD vs
EHC Fusion Both Feet task.
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plane of the SVM. Figure 6.4 shows that for the experiment PD vs YHC there are not
large amount of miss–clasified respect to the YHC in comparison with PD vs EHC where
some patients were miss-classified, being the closeness between the mean age of these
populations an important factor for this result.
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Figure 6.5: ROC curve graphics of the best Poincaré Features results. A) PD vs YHC
Fusion Right Foot task. B) PD vs EHC Fusion Both Feet task.
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Figure 6.6: KNN Scores of Poincaré Features: A) PD vs YHC Fusion Right Foot task. B)
PD vs EHC Fusion Both Feet task.

In Poincaré features the scores respect to KNN in Figure 6.6 that present a lot of miss-
classified data. Figure 6.7 shows the SVM Scores, where for PD vs. YHC the distances
of the SVM increased, but the data is close to each other. For PD vs. EHC the range of
distances are lower, but the data is well defined in the decision boundary and the data is
accurately classified. In Figure 6.8 for PD vs. EHC there is not any sample with probability
1, but despite this, the classification indicates good performance.
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Figure 6.7: SVM Scores of Poincaré Features: A) PD vs YHC Fusion Right Foot task. B)
PD vs EHC Fusion Both Feet task.
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Figure 6.8: RF Scores of Poincaré Features: A) PD vs YHC Fusion Right Foot task. B)
PD vs EHC Fusion Both Feet task.
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Figure 6.9: ROC curve graphics of the best NLD+Poincaré results. A) PD vs YHC 4x10
Left Foot task. B) PD vs EHC Fusion Left Foot task.
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Figure 6.10: KNN Scores of NLD+Poincaré Features: A) PD vs YHC 4x10 Left Foot task.
B) PD vs EHC Fusion Left Foot task.
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Figure 6.11: SVM Scores of NLD+Poincaré Features: A) PD vs YHC 4x10 Left Foot task.
B) PD vs EHC Fusion Left Foot task.
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Figure 6.12: RF Scores of NLD+Poincaré Features: A) PD vs YHC 4x10 Left Foot task.
B) PD vs EHC Fusion Left Foot task.
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In NLD+Poincaré the score shows us that it accomplishes the same pattern that in the
other set of features, the difference is PD vs. EHC obtained good performance and taking
into account that the average age of the patient is 61.95 years old and the average age of
EHC subjects is 62.65 years old, the effect of the age do not affect the results in PD vs.
EHC.
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6.3 Regression: Neurological State Prediction

Two experiments were performed according to the MDS-UPDRS-III and to the MDS-
UPDRS-III subscore for lower limbs. Table 6.8 shows the results of the prediction of the
neurological state of the patients according to the MDS-UPDRS-III. The highest Spear-
man’s correlation (ρ) was obtained by NLD features, where they up to ρ = 0.65, pval <
0.005 in Left foot fusion task.

Table 6.8: Results of the Neurological State Prediction with the total UPDRS. MAE:
mean absolute error. ρ: Spearman’s Correlation.

NLD Features Poincaré Features NLD+Poincaré Features
Foot Task ρ pval MAE C ε ρ pval MAE C ε ρ pval MAE C ε
Left 2x10 0.46 <0.005 15.40 100 101 0.44 <0.005 15.46 100 100 0.45 <0.005 14.29 10−5 10−5

Left 4x10 0.39 0.01 13.80 10−1 100 0.18 0.24 17.99 10−5 100 0.33 0.03 13.70 10−5 101

Left Fusion 0.65 <0.005 13.30 10−1 100 0.26 0.08 18.00 10−1 100 0.05 0.73 15.85 10−5 10−5

Right 2x10 0.50 <0.005 12.95 10−5 101 0.07 0.64 15.27 10−2 100 0.34 0.02 15.46 100 101

Right 4x10 0.01 0.93 17.04 10−5 10−5 0.47 <0.005 15.07 100 101 0.40 0.01 15.28 100 10−5

Right Fusion 0.50 <0.005 14.76 100 101 0.24 0.12 18.21 100 10−5 0.22 0.16 14.90 10−2 101

Both 2x10 0.44 <0.005 13.80 10−1 101 0.24 0.11 16.26 100 10−5 0.45 <0.005 13.98 10−2 101

Both 4x10 0.21 0.17 14.10 10−5 100 0.15 0.32 17.27 100 10−5 <0.005 0.80 15.20 10−5 10−5

Both Fusion 0.42 <0.005 14.18 10−2 100 -0.10 0.53 16.11 10−2 10−5 -0.06 0.68 14.96 10−5 101

Average 0.40 0.12 14.37 – – 0.22 0.23 16.63 – – 0.24 0.29 14.85 – –
STD 0.19 0.31 1.24 – – 0.17 0.23 1.26 – – 0.20 0.40 0.71 – –

Table 6.9 shows the results of the prediction of the neurological state of the patients
according to the MDS-UPDRS-III subscore for lower limbs. In general, the highest corre-
lations are obtained for the NLD features too (ρ up to 0.31).

Table 6.9: Results of the Neurological State Prediction with the lower extremities
UPDRS. MAE: mean absolute error. ρ: Spearman’s Correlation.

NLD Features Poincaré Features NLD+Poincaré Features
Foot Task ρ pval MAE C ε ρ pval MAE C ε ρ pval MAE C ε
Left 2x10 -0.13 0.38 10.19 10−2 101 -0.31 0.04 9.10 10−1 10−5 -0.20 0.18 8.02 10−5 100

Left 4x10 0.16 0.28 6.93 10−5 10−5 -0.15 0.33 11.74 10−4 100 0.08 0.60 7.70 10−5 10−5

Left Fusion 0.07 0.63 8.88 10−1 10−5 -0.09 0.56 8.44 10−4 100 -0.15 0.32 8.37 10−5 100

Right 2x10 0.19 0.21 8.43 100 101 0.16 0.30 10.82 10−5 101 -0.02 0.91 9.44 100 101

Right 4x10 -0.00 0.98 10.77 100 100 -0.24 0.10 14.37 10−5 100 0.17 0.26 9.64 100 101

Right Fusion 0.31 0.03 8.00 100 101 -0.02 0.90 11.41 101 100 -0.05 0.77 8.71 10−2 101

Both 2x10 0.26 0.07 8.25 10−1 100 0.18 0.24 8.45 100 10−5 0.16 0.31 8.98 10−5 101

Both 4x10 0.30 0.04 7.57 100 100 0.09 0.54 9.41 100 10−5 0.03 0.86 8.30 10−5 101

Both Fusion 0.31 0.03 8.26 10−1 101 -0.09 0.58 8.46 10−2 101 0.07 0.65 7.93 10−2 101

Average 0.17 0.30 8.59 – – -0.05 0.40 10.24 – – 0.01 0.54 8.56 – –
STD 0.16 0.33 1.21 – – 0.17 0.27 2.02 – – 0.13 0.27 0.68 – –

Although the MDS-UPDRS-III obtained highest results, but it has its counterpart, the
signal was capture from all the body and the sensor were just attached in the feet. The
reason because MDS-UPDRS-III has higher results than with the subscore of lower limbs
is the range of the total UPDRS is larger and some parameters were a little bit affected
by this.
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6.4 Classification of patients in several sages of the dis-
ease

Although there is some correlation between the predicted and the real MDS-UPDRS-III
scores, we believe that from the clinical point of view it is more suitable for the patients
to know in which stage of the disease they are, rather than to have the prediction of a
continuous scale. In addition, for medical applications is difficult to have a great amount
of data to train suitable regression algorithms like an SVR. For those reasons we believe
that it is better to divide the patients into three groups according to their neurological
state: lower, intermediate, and severe. Figures 6.13 and 6.14 show the division of the
neurological stage of the patients into the three groups. Additionally, EHC subjects are
considered as a separate group to perform a four-class classification strategy.
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Figure 6.13: Histogram for the neurological state of the patients according to the
MDS-UPDRS-III. Patients in initial stage (green), patients in intermediate stage (yellow),

and patients in severe stage (purple).

Table 6.10 shows the results of classification applying NLD features and classes di-
vided by MDS-UPDRS-III. The highest performance was obtained in Left foot 2x10 task
for the SVM classifier with accuracies up to 64.4% and κ up to 0.41 (indicating a moderate
result).

In Poincaré (see Table 6.11), the standard deviation was reduced indicating less data
dispersion. The performance decreased obtaining as highest accuracy 58.9% that is
given by Right foot fusion task.

In Table 6.12 is shown the results of the combination of features, obtaining accuracies
up to 63.3% and κ up to 0.39, close to a moderate result.
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Gait Assessment of Patients with Parkinson’s Disease using Inertial Sensors and
Non-Linear Dynamics Features

Table 6.10: Results of Multi-Class Classification for NLD Measurements according to the
MDS-UPDRS-III. ACC: accuracy in the test set. κ: Cohen’s kappa index.

KNN SVM RF

Foot Task ACC(%)
(µ± σ) κ K ACC(%)

(µ± σ) κ C γ
ACC(%)
(µ± σ) κ N D

Left 2x10 54.4±6.5 0.22 3 62.2±14.2 0.40 101 10−3 64.4±9.6 0.41 50 20
Left 4x10 56.7±4.2 0.25 5 58.9±9.6 0.32 101 10−3 60.0±5.2 0.33 20 5
Left Fusion 61.1±10.5 0.35 5 56.7±11.3 0.24 101 10−4 62.2±9.5 0.37 50 20

Right 2x10 52.2±4.4 0.17 5 61.1±9.3 0.35 101 10−3 55.6±6.1 0.28 10 10
Right 4x10 50.0±7.0 0.20 5 61.1±7.8 0.38 101 10−4 55.6±3.5 0.24 10 10
Right Fusion 55.6±4.9 0.25 5 55.6±12.1 0.29 101 10−3 53.3±14.3 0.20 20 20
Both 2x10 55.5±11.6 0.27 5 52.2±8.3 0.20 101 10−3 62.2±10.7 0.38 50 10
Both 4x10 50.0±6.0 0.18 5 55.6±9.3 0.29 101 10−3 62.2±8.8 0.35 10 20
Both Fusion 56.7±5.4 0.29 3 51.1±5.4 0.18 101 10−3 60.0±8.8 0.36 5 10

Average 54.7 0.24 – 57.2 0.29 – – 59.5 0.32 – –
STD 3.6 0.1 – 4.0 0.1 – – 3.8 0.1 – –

Table 6.11: Results of Multi-Class Classification for Poincaré Measurements according to
the MDS-UPDRS-III. ACC: accuracy in the test set. κ: Cohen’s kappa index.

KNN SVM RF

Foot Task ACC(%)
(µ± σ) κ K ACC(%)

(µ± σ) κ C γ
ACC(%)
(µ± σ) κ N D

Left 2x10 51.1±8.2 0.14 5 48.9±2.2 0.13 101 10−3 55.5±3.5 0.22 5 20
Left 4x10 54.4±9.6 0.18 5 55.6±9.3 0.29 101 10−4 52.2±4.4 0.17 50 5
Left Fusion 52.2±2.7 0.13 5 50.0±5.0 0.14 101 10−4 52.2±2.7 0.13 20 5

Right 2x10 52.2±2.7 0.14 7 55.6±7.0 0.20 101 10−3 55.6±6.1 0.21 50 20
Right 4x10 44.4±6.1 0.00 9 51.1±7.8 0.10 101 10−3 54.4±4.2 0.21 10 5
Right Fusion 50.0±3.5 0.11 3 50.0±3.5 0.17 10−4 10−4 58.9±6.7 0.26 50 50
Both 2x10 47.8±4.4 0.00 7 47.8±4.4 0.11 10−4 10−4 53.3±4.4 0.15 10 10
Both 4x10 46.7±4.4 0.00 5 51.1±5.4 0.20 101 10−4 55.6±5.0 0.18 10 5
Both Fusion 52.2±4.4 0.11 9 52.2±7.5 0.19 101 10−3 54.4±4.4 0.18 10 50

Average 50.1 0,09 – 51.4 0.17 – – 49.3 0.19 – –
STD 3.2 0.1 – 2.7 0.1 – – 16.6 0.0 – –

Table 6.13 shows the confusion matrices for the best results of the multi-class exper-
iment for MDS-UPDRS-III when we consider only the NLD features, only the Poincaré
based measures, and the combination of both feature sets. The confusion matrices for
the three feature sets indicate that is easier to the classifiers discriminate EHC subjects
than discriminate the PD patients in different stages, i.e., the proposed approach has a
high specificity. The third group of PD patients (severe stage) presented difficulties in
the classification, it is because this class (PD 3) contains big variability in its data(see
Figure 6.13).
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Table 6.12: Results of Multi-Class Classification for NLD+Poincaré Measurements
according to the MDS-UPDRS-III. ACC: accuracy in the test set. κ: Cohen’s kappa

index.

KNN SVM RF

Foot Task ACC(%)
(µ± σ) κ K ACC(%)

(µ± σ) κ C γ
ACC(%)
(µ± σ) κ N D

Left 2x10 57.8±12.4 0.32 5 55.6±3.5 0.29 101 10−3 56.7±5.4 0.28 5 5
Left 4x10 54.4±4.2 0.20 5 55.6±13.6 0.29 101 10−3 57.8±7.5 0.27 20 5
Left Fusion 60.0±4.2 0.34 3 58.9±6.7 0.36 101 10−3 56.7±5.4 0.25 20 5

Right 2x10 47.8±2.7 0.01 7 57.6±8.3 0.31 101 10−4 57.8±10.3 0.30 5 20
Right 4x10 51.1±9.6 0.16 7 46.7±2.7 0.10 101 10−4 53.3±5.7 0.21 10 5
Right Fusion 55.6±3.5 0.20 3 50.0±3.5 0.10 10−4 10−3 55.6±5.0 0.23 30 20
Both 2x10 52.2±4.4 0.14 3 57.8±5.7 0.33 101 10−3 56.7±4.2 0.26 10 10
Both 4x10 55.6±8.6 0.22 5 53.3±9.0 0.21 101 10−3 58.9±7.5 0.29 30 20
Both Fusion 58.9±6.7 0.29 3 60.0±7.4 0.34 101 10−4 63.3±9.0 0.39 50 5

Average 54.8 0.21 – 55.1 0.26 – – 57.4 0.28 – –
STD 3.9 0.1 – 4.4 0.1 – – 2.7 0.1 – –

Table 6.13: Confusion Matrices of Multi-Class Classification for best results in each
experiment according to the MDS-UPDRS-III. EHC: EHC subjects. PD 1: MDS-UPDRS
III (Lower Limbs) ranging between 0-10. PD 2: MDS-UPDRS III (Lower Limbs) ranging

between 11-17. PD 3: MDS-UPDRS III (Lower Limbs) of 18+.

NLD Feature
Left 2x10 RF

Poincaré Features
Right Fusion RF

NLD+Poincaré Features
Both Fusion RF

Class EHC PD 1 PD 2 PD 3 EHC PD 1 PD 2 PD 3 EHC PD 1 PD 2 PD 3
EHC 45 0 0 0 44 0 1 0 45 0 0 0
PD 1 3 2 5 4 9 3 2 0 4 1 6 3
PD 2 6 2 7 1 9 0 6 1 5 3 8 0
PD 3 4 2 5 4 10 3 2 0 4 1 7 3

But taking into account that the signals were capture only from the gait, it is a best
comparison a class division based on the MDS-UPDRS-III subscore of lower limbs.

Table 6.14 shows the results of performing a Multi-Class Classification for the NLD
Features using the MDS-UPDRS-III subscore for lower limbs. The highest accuracies are
also obtained with the signals captured with the combination of features from both sensors
and with the RF classifier (63.3%), as in the previous experiments when we discriminate
only PD patients and EHC subjects. The κ-index (0.41) indicates moderate agreement in
the classification.

The results when the Poincaré features are considered are shown in Table 6.15. In
general, the accuracy is reduced in around 3.4% respect to the obtained with the classi-
cal NLD and entropy features. However, note that the standard deviation is lower when
we consider the Poincaré features, which make the results more stable across different
partitions of the test set.
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Figure 6.14: Histogram for the neurological state of the patients according to the
MDS-UPDRS-III subscore for lower limbs. Patients in initial stage (green), patients in

intermediate stage (yellow), and patients in severe stage (purple).

Table 6.14: Results of Multi-Class Classification for NLD Measurements according to the
MDS-UPDRS-III subscore for lower limbs. ACC: accuracy in the test set. κ: Cohen’s

kappa index.

KNN SVM RF

Foot Task ACC(%)
(µ± σ) κ K ACC(%)

(µ± σ) κ C γ
ACC(%)
(µ± σ) κ N D

Left 2x10 54.4±6.5 0.22 3 61.1±9.9 0.36 101 10−3 61.1±7.0 0.37 50 10
Left 4x10 56.7±4.2 0.25 5 58.9±9.6 0.32 101 10−3 60.0±4.2 0.33 30 30
Left Fusion 62.2±9.5 0.37 5 62.2±13.3 0.40 101 10−3 61.1±12.1 0.34 10 20

Right 2x10 52.2±4.4 0.17 5 57.8±5.6 0.29 101 10−4 57.8±10.3 0.30 30 20
Right 4x10 52.2±9.0 0.19 5 58.9±5.6 0.34 101 10−4 50.0±11.3 0.15 5 10
Right Fusion 55.6±4.9 0.25 5 54.4±8.8 0.27 101 10−3 56.7±8.8 0.25 20 10
Both 2x10 56.7±9.6 0.28 5 55.6±6.0 0.24 101 10−3 63.3±6.7 0.40 50 10
Both 4x10 50.0±6.0 0.18 5 56.7±9.5 0.30 101 10−3 55.6±9.2 0.23 5 5
Both Fusion 60.0±8.1 0.36 5 51.1±5.4 0.18 101 10−3 62.2±7.3 0.40 5 10

Average 55.6 0.25 – 50.7 0.30 – – 58.6 0.31 – –
STD 3.9 0,1 – 18.4 0,1 – – 4.1 0.1 – –

The results when we combine the classical NLD and the Poincaré features are shown
in Table 6.16. This early-fusion strategy shows to be the most accurate to discriminate
between PD patients in several stages of the disease and EHC subjects. We obtain
accuracies up to 65.2%, which is slightly higher than the obtained only with the NLD
features. This fact indicates that our proposed features based on Poincaré sections and
GMM models provide complementary information to the classical NLD analysis about the
non-linear effects of the gait process of PD patients.
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Table 6.15: Results of Multi-Class Classification for Poincaré Measurements according to
the MDS-UPDRS-III subscore for lower limbs. ACC: accuracy in the test set. κ: Cohen’s

kappa index.

KNN SVM RF

Foot Task ACC(%)
(µ± σ) κ K ACC(%)

(µ± σ) κ C γ
ACC(%)
(µ± σ) κ N D

Left 2x10 51.1±8.2 0.14 5 51.1±4.2 0.18 101 10−3 50.0±3.5 0.10 20 5
Left 4x10 54.4±9.5 0.18 5 56.7±13.3 0.29 101 10−4 50.0±3.5 0.10 5 50
Left Fusion 52.2±2.7 0.13 5 56.7±9.5 0.28 101 10−4 52.2±6.6 0.17 5 20

Right 2x10 52.2±2.7 0.14 7 55.6±5.0 0.22 101 10−3 57.8±9.6 0.25 30 20
Right 4x10 42.2±4.4 -0.10 9 51.1±2.2 0.10 101 10−4 53.3±5.6 0.16 20 2
Right Fusion 50.0±3.5 0.10 3 51.1±2.2 0.11 10−4 10−4 53.3±8.3 0.21 20 30
Both 2x10 47.8±5.6 0.04 7 48.9±2.2 0.10 10−4 10−4 54.4±4.2 0.22 10 30
Both 4x10 46.7±4.4 -0.01 7 51.1±8.8 0.20 101 10−3 50.0±3.5 0.12 10 5
Both Fusion 48.9±2.2 0.05 9 51.1±7.3 0.18 101 10−3 53.3±5.7 0.15 10 5

Average 49.5 0.07 – 52.6 0.18 – – 52.7 0.16 – –
STD 3.6 0.1 – 2.9 0.1 – – 2.5 0.1 – –

Table 6.16: Results of Multi-Class Classification for NLD+Poincaré Measurements
according to the MDS-UPDRS-III subscore for lower limbs. ACC: accuracy in the test

set. κ: Cohen’s kappa index.

KNN SVM RF

Foot Task ACC(%)
(µ± σ) κ K ACC(%)

(µ± σ) κ C γ
ACC(%)
(µ± σ) κ N D

Left 2x10 49.5±6.6 0.08 9 58.5±5.1 0.32 101 10−3 57.1±9.3 0.26 5 10
Left 4x10 50.1±3.7 0.12 5 60.1±6.1 0.34 101 10−3 58.4±7.8 0.26 100 20
Left Fusion 57.3±4.1 0.21 5 65.2±8.1 0.43 101 10−3 61.8±5.2 0.33 30 10

Right 2x10 53.9±4.1 0.11 9 55.1±5.7 0.25 101 10−3 52.8±2.5 0.14 10 2
Right 4x10 53.9±7.0 0.16 5 60.7±7.1 0.34 101 10−4 58.9±4.9 0.24 10 50
Right Fusion 56.1±4.4 0.18 5 54.0±9.2 0.20 101 10−3 60.6±5.6 0.31 30 5
Both 2x10 52.9±5.0 0.11 5 60.7±9.0 0.29 101 10−3 61.8±5.6 0.34 10 30
Both 4x10 56.2±6.2 0.20 5 61.8±6.2 0.37 101 10−3 51.6±3.3 0.14 5 2
Both Fusion 59.6±6.1 0.25 5 64.1±8.0 0.38 101 10−3 59.5±4.1 0.28 5 50

Average 55.0 0.16 – 60.0 0.32 – – 58.0 0.26 – –
STD 3.7 0.1 – 3.7 0.1 – – 3.6 0.1 – –

Table 6.17 shows the confusion matrices for the best results of the multi-class ex-
periment when we consider only the NLD features, only the Poincaré based measures,
and the combination of both feature sets. The confusion matrices for the three feature
sets indicate that EHC subjects are accurately classified compared to patients in different
stages, i.e., the proposed approach has a high specificity. The group of PD patients in se-
vere stage of the disease (PD 3) seems to be the most difficult group to classify correctly,
which could be explained due to the high variability of the original MDS-UPDRS-III score
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for those patients (see Figure 6.14).

Table 6.17: Confusion Matrices of Multi-Class Classification for best results in each
experiment according to the MDS-UPDRS-III subscore for lower limbs. EHC: EHC

subjects. PD 1: MDS-UPDRS III (Lower Limbs) ranging between 0-10. PD 2:
MDS-UPDRS III (Lower Limbs) ranging between 11-17. PD 3: MDS-UPDRS III (Lower

Limbs) of 18+.

NLD Features
Both 2x10m RF

Poincaré Features
Right 2x10m RF

NLD+Poincaré Features
Left Fusion SVM

Class EHC PD 1 PD 2 PD 3 EHC PD 1 PD 2 PD 3 EHC PD 1 PD 2 PD 3
EHC 45 0 0 0 43 0 2 0 41 1 3 0
PD 1 3 2 5 5 8 4 2 1 5 4 3 2
PD 2 7 1 5 2 9 1 4 1 5 0 11 0
PD 3 3 2 5 5 8 4 2 1 6 4 3 2
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Conclusions.

An automatic assessment of the gait in PD patients is proposed in this study. A NLD
approach is considered to evaluate stability, long-term dependency, and complexity of the
walking process of the patients. The study includes classical NLD features such as CD,
LLE, HE, LZC and several entropy measures. In addition, we proposed a new character-
ization scheme based on a clustering analysis of Poincaré sections using a GMM algo-
rithm. An automatic discrimination between PD patients and two groups of HC subjects is
performed to assess the impact of age in the walking process and also the extracted fea-
tures were used to predict the neurological state of the patients, and to classify patients in
several stages of the disease. The set of NLD features included features computed from
the phase space and several entropy measures.
The results show that it is possible to discriminate between PD patients and HC subjects
with accuracies up to 93.3% for YHC subject and 85.6% for EHC subjects, using the
proposed NLD analysis. The proposed NLD features based on Poincaré sections also
provide complementary information to the classical NLD features to discriminate between
PD patients and EHC subjects. While in the PD patients vs. YHC subjects experiment,
NLD presents higher performance than other set of features.
The proposed approach seems to be promising to classify PD patients in different stages
of the disease. The combination of the classical NLD features with the proposed fea-
tures from Poincaré sections is also the most accurate approach to classify PD patients
in several stages of the disease (up to 65.2%) and was achieved a moderate result with
Cohen Kappa up to 0.43. Patients in lower stages of disease are mainly miss-classified
with EHC subjects, which is explained due to in the early stages of the disease, the symp-
toms appear mainly only in the upper limbs. PD patients in severe stages of the disease
are miss-classified mainly due to the those patients are more spread out in terms of the
original MDS-UPDRS scale than the other groups of patients. Additional labeled data is
need to improve the accuracy to classify patients in several stages of the disease.
The combination of features extracted from different tasks and from both feet is more
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effective in the classification process, i.e., both tasks and feet provide complementary in-
formation to discriminate between PD patients and HC subjects. The most correct way to
model the gait signal obtained by inertial sensor attached to the foot, is using the MDS-
UPDRS-III subscore of the lower limbs. The results also indicate the presence of the
cross laterality effect [47], since higher accuracies are obtained classifying the features
computed from the left foot rather than those computed from the right foot, although most
of the subjects from this study are right-handed.
The proposed approach can be extended to other applications. For instance the dis-
crimination between PD and other neurological disorders with similar symptoms, such as
Huntington’s disease, amyotrophic lateral sclerosis, or essential tremor. There is evidence
for this application in the literature [19,48]. The proposed features can also be considered
to analyze movement signals. Besides, following the same line of NLD, it can be con-
sidered other features such as Recurrency Quantification Analysis (RQA), that has been
applied in gait analysis in different injuries and diseases as in related work [19,49].

Chapter 7 Paula Andrea Pérez Toro 53
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Appendix A

Kolgomorov-Sinai entropy

The entropy is a thermodynamic quantity that describes the amount of disorder in a sys-
tem. This concept can be generalized to characterize the amount of information stored
in a more general probability distribution. The information theory provides an important
approach to the time series analysis, considering a sample of a system as a information
source. An entropy for an static distribution quantifies the amount of information which
is necessary to specify a sample value x with certain precision. When it is known the
probability density dµ/dx. Then, we cover the space where the sample is with disjoint
boxes Pj of side length ≤ ε. Defining Pj =

∫
pj dµ(x) is the fraction into the jth box that in

Equation A.1 is defined it, where Pε is set boxes and order−q refers to Renyi entropy.

H̃q(Pε) =
1

1− q
ln
∑
j

pqj (A.1)

When q = 1 can be evaluated the l’Hospital rule, being H̃1 the Shannon entropy as is
shown in Equation A.2

H̃1(Pε) = ln
∑
j

pqj (A.2)

Introducing Pε in a dynamic range of a sample, being scalar samples which is common
in a time series situation. Introducing the joint probability pi1,i2,...,im, being the Kolmogorov-
Sinai entropy that defines block entropies of block with size m, show in Equation A.3.

Hq(m,Pε) =
1

1− q
ln

∑
i1,i2,...,im

pqi1,i2,...,im (A.3)

The order-q entropies are then given in Equation A.4, where Sup indicates it must be
maximize over all possible partitions P and usually implies ε→ 0. Strictly h1 is defined as
the Kolgomorov-Sinai entropy.
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hq = Sup
P

lim
m→∞

1

m
Hq(m,Pε) ≡ Sup

P
lim
m→∞

hq(m,Pε) (A.4)
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Appendix B

Expectation maximization algorithm
(EM)

This algorithm is an iterative optimization method to estimate the maximum likelihood of
the parameters that best represent the statistics of a random variable. It is modeled using
a parametric model, the random variable behaviour x, in a sense of maximum likelihood
shown in the equation B.1.

ϕ = maxϕ[Lx(ϕ|xn)] (B.1)

Where xn is a set of n complete data (features). The likelihood in equation B.2, given
the data is the same as probability density assumed to this observed data.

L(ϕ|x) = P (x|ϕ) (B.2)

Usually the log-likelihood (equation B.3) is more used than the above.

L(ϕ|x) = ln(P (x|ϕ)) (B.3)

After of the k–th iteration L(ϕ|x) is increase, searching maximize the following differ-
ence:

ϕ = arg maxϕ[Lx(ϕ
(k)|x)− Lx(ϕ(k−1)|x)] (B.4)
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Appendix C

Optimization process

C.1 Optimization process SVM

To the optimization problem solution it is performed by the following steps:

1. Lagrangian Function: now taking into account the constrains to the minimization of
the Equation 4.6, to perform the optimization the Lagrangian is used and given by
Equation C.1. ai ≥ 0 and µi ≥ 0 are the Lagrange multipliers.

L =
1

2
||ω||2 + C

N∑
i=1

ξi −
N∑
i=1

ai
{
ŷiyi − 1 + ξi

}
−

N∑
i=1

µiξi (C.1)

2. Karush Kuhn Tucker (KKT) conditions: the constrained optimization is performed
with KKT conditions, which are given by:

an ≥ 0 (C.2)

ŷiyi − 1 + ξi ≥ 0 (C.3)

ai(ŷiyi − 1 + ξi) = 0 (C.4)

µi ≥ 0 (C.5)

ξi ≥ 0 (C.6)
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µiξi = 0 (C.7)

3. Now, the set of derivatives of the Lagragian respect to ω, b and ξi to zero.

∂L

∂ω
= ω −

N∑
i=1

aiŷiφ(xi) = 0 (C.8)

∂L

∂b
= −

N∑
i=1

aiŷi = 0 (C.9)

∂L

∂ξi
= C − µi − ai = 0 (C.10)

4. Relation between variables:

ω =
N∑
i=1

aiŷiφ(xi) (C.11)

ai = C − µi (C.12)

5. Replace in the Lagrangian function:

L =
N∑
i=1

ai −
1

2

N∑
i=1

N∑
n=1

aianŷiŷnk(xi,xn) (C.13)

Where kernel function is defined by k(xi, xn) = φ(xi)
Tφ(xn)T .

6. Additional constraints: there are additional constraints respect to ai, as µi ≥ 0,
ai ≥ 0 and referring to the Equation C.12, therefore have to maximize with respect
to ai subject to:

0 ≤ ai ≤ C ⇒ Box Constraints (C.14)

Now, replacing Equation C.11 into Equation 4.5, we can observe the predictions for
new data using Equation C.15.

y(x) =
N∑
i=1

aiŷik(x, xi) + b (C.15)
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We can observe that a subset of data points could be ai = 0 presenting no contribu-
tion to the model.Thus, when ai > 0 the data points can be support vectors. Then,
if ai > 0 it must satisfy that ŷiyi = 1 − ξi. If ai < C and µi > 0, it requires that
ξi = 0 lying these points on the margin. and finally, when ai = C may stay inside the
margin and maybe miss-classified if ξi > 1 or correctly classified if ξ ≤ 1.

7. To find the independent term b: when 0 < ai < C have ξi = 0 and the data points are
support vectors, thus, in this case, ŷiyi = 1 and thus, replacing that with the Equation
C.15 results the Equation C.16, where S is the set of indices of the support vectors.

ŷi

(∑
n∈S

anŷnk(xn,xi)
)

= 1 (C.16)

Finally, solving the last equation for b, it is obtained the Equation C.17, where M is
the set of indices of data points with 0 < ai < C.

b =
1

NM

∑
i∈M

(
ŷi −

∑
n∈S

anŷnk(xn,xi)
)

(C.17)

The previous description is only to discriminate between two classes; however, the
SVM can be adpated to solve multi-class classification problems. To solve this, there
are several methods to combine multiples two classes to build a multi-class classifiers. To
perform the multi-class classification, we used a method called ”one-vs-the-rest” (OVR),
that consists of fitting a classifier per class. The intial approach of OVR requires certain
unanimity between all SVMs, it means a data point could be classified if and only if this
SVM’s class is accepted it and the others rejected it. An advantage of this model is its
interpretability, because it is possible to obtain some knowledge about the class inspecting
its classifier.

C.1.1 Kernel Function

Kernel function converts what would be a nonlinear classification problem in an original
space into a simple lineal classification problem into a grater dimensionality space. To
implement it, it is chosen a feature space mapping φ(x) (basis function) , using this to find
the corresponding kernel, defined in the Equation C.18 to one-dimensional [50].

k(x, x′) = φ(x)Tφ(x′) (C.18)

To chose the kernel function, it must correspond to a scalar product in some feature
space. To see if the kernel is valid without to build a φ(x) function, it is necessary that
satisfies the condition of that the matrix k(x, x′) should be positive semi-definite.
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To build new kernel functions, it can be performed a simple building as if they were
blocks. For our case, we chose a kernel function called ”Radial Basis Function” (RBF)
defined by the Equation C.19.

k(x, x′) = exp[−γ||x− x′||2] (C.19)

The γ parameter establishes the width of the bell-shaped curve. RBF or better known
as Gaussian kernel, has the property that each basis function depends only on the radial
distance, most commonly used the Euclidean distance.

C.2 Optimization process SVR

To the optimization problem solution it is performed by the following steps:

1. Lagrangian Function: the Equation 4.12 must be minimized subject to the con-
straints. Thus, Lagrange multipliers ai ≥ 0, âi ≥ 0, µi ≥ 0 and µ̂i ≥ 0 are introduced
now taking into account the constrains to the minimization of the Equation 4.12 and
then performing the optimization the Lagrangian using by Equation C.20.

L =
1

2
||ω||2 + C

N∑
i=1

(ξi + ξ̂i)−
N∑
i=1

(µiξi + µ̂iξ̂i)

−
N∑
i=1

ai
{
yi + ε+ ξi − ŷi

}
−

N∑
i=1

âi
{
yi + ε+ ξ̂i − ŷi

} (C.20)

2. Karush Kuhn Tucker (KKT) conditions: the constrained optimization is perform with
KKT conditions, which are given by:

ai(yi − ŷi + ξi + ε) = 0 (C.21)

âi(yi − ŷi + ξ̂i + ε) = 0 (C.22)

(C − âi)ξ̂i = 0 (C.23)

(C − ai)ξi = 0 (C.24)
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3. Now, the set of derivates of the Lagragian respect to ω, b and ξi to zero giving.

∂L

∂ω
= ω −

N∑
i=1

(ai − âi)ŷiφ(xi) = 0 (C.25)

∂L

∂b
= −

N∑
i=1

(ai − âi) = 0 (C.26)

∂L

∂ξi
= C − µi − ai = 0 (C.27)

∂L

∂ξ̂i
= C − µ̂i − âi = 0 (C.28)

4. Relation between variables:

ω =
N∑
i=1

(ai − âi)ŷiφ(xi) (C.29)

5. Replace in the Lagrangian function:

L(a, â) = −1

2

N∑
i=1

N∑
n=1

(ai− âi)(an− ân)k(xi,xn)− ε
N∑
i=1

(ai− âi)+
N∑
i=1

(ai− âi)ŷi (C.30)

Where kernel function is defined by k(xi, xn) = φ(xi)
Tφ(xn)T .

6. Additional constraints: there are additional constraints respect to ai and âi, as µi ≥ 0,
µ̂i ≥ 0, ai ≥ 0 and âi ≥ 0, therefore have to maximize with respect to ai and âi subject
to:

0 ≤ ai ≤ C ⇒ Box Constraints (C.31)

0 ≤ âi ≤ C ⇒ Box Constraints (C.32)

Now, replacing Equation C.29 into Equation 4.5, we can observe the predictions for
new data using Equation C.33.
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y(x) =
N∑
i=1

(ai − âi)ŷiφ(xi) + b (C.33)

Then, when ai = âi = 0, all points are inside the ε− tube, while the data points that
contribute to predictions using Equation are called support vectors, where ai 6≡ 0 or
âi 6≡ 0 lying on the boundary of the tube or outside of it.

7. To find the independent term b: when 0 < ai < C have ξi = 0 and the data points are
support vectors, also satisfying yi + ε− ŷi = 0. Solving the Equation 4.5 is obtained
b in Equation C.34, where M is the set of indices of data points with 0 < ai < C.

b = ŷi − ε−
N∑
n=1

(ai − âi)k(xi,xn) (C.34)

Then, it can obtain and equivalent result with 0 < âi < C, being better way, an average
of the all b estimations. As was previously mentioned kernel function transform an original
space into a grater dimensionality space, to model the problem in an easier way. For SVR,
we used a Linear Kernel that it was defined in Equation C.18.
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